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Bethe Lattice Spin Glass: The Effects of a 
Ferromagnetic Bias and External Fields. 
I. Bifurcation Analysis 
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We present a rigorous analysis of the + J  Ising spin-glass model on the Bethe 
lattice with fixed uncorrelated boundary conditions. Phase diagrams are derived 
as a function of temperature vs. concentration of ferromagnetic bonds and, for 
a symmetric distribution of bonds, external field vs. temperature. In this part we 
characterize the bulk ordered phases using bifurcation theory: we prove the 
existence of a distribution of single-site magnetizations far inside the lattice 
which is stable with respect to changes in the boundary conditions. 
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1. I N T R O D U C T I O N  

In this and the companion paper ~1) we analyze the + J  Ising spin-glass 
problem on the Bethe lattice with fixed uncorrelated boundary conditions. 
The symmetric case (i.e., when half of the bonds are ferromagnetic) in zero 
field was analyzed previously in ref. 2, where it was shown that there is a 
spin-glass transition at temperature T o above which the system is 
paramagnetic and below which the Edwards-Anderson order parameter is 
strictly positive. In this work we extend the phase diagram to include 
varying fractions 2 of ferromagnetic bonds, and, in the symmetric case 
(2 = 1/2), finite external fields. Our principal results are illustrated in Figs. 1 
and 2. 
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Fig. 1. Phase diagram for the Bethe lattice spin glass, plotted as a function o fp  = tanh(Y/kT) 
and the fraction 2 of ferromagnetic bonds. At high temperatures, the system is paramagnetic. 
As the temperature decreases, there is a transition to either a spin-glass or a ferromagnetic 
phase, depending on 2. Between these phases there is an intermediate magnetized spin-glass 
phase (MSG). Like the ferromagnet, the MSG phase has nonzero net magnetization, but it 
also has glassy susceptibilities. The phase diagram for 2 < 1/2 can be obtained by reflection 
across the line 2 =  1/2, replacing F and MSG with phases which have long-range 
antiferromagnetic order. 

1.1. Historical Background 

Spin glasses are magnetic systems characterized by randomness and 
frustration: see ref. 3 for a review of theoretical and experimental progress. 
The Hamiltonian typically used to describe spin glasses is the Edwards-  
Anderson Hamiltonian (4) 

HEA = - ~ Jijaiaj (1) 
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Fig. 2. De Almeida Thouless line. On the Bethe lattice the spin-glass transition persists in 
the presence of an external field. The asymptotic form of the AT line is h ( T ) ~  I P -  Pal 3/2, and 
the critical exponent for the Edwards-Anderson susceptibility is Y = 1. 



Bethe Latt ice Spin Glass. I 989 

/ 

e! 
I 
I 

Oxy~xz 
? 

F 

Fig. 3. A Bethe lattice with forward branching ratio 2. Frustration is associated with the 
fixed spins on the boundary. In the full-space lattice the dashed bond connecting x and a is 
present, whereas in the half-space lattice it is removed, and x is the origin. 

where the bonds Ji, j a r e  quenched and independently distributed, and the 
sum is over nearest neighbor pairs on a regular lattice. Frustration (i.e., the 
fact that all interaction energies cannot be minimized simultaneously) 
makes this problem extremely difficult to analyze in finite dimensions. In 
an effort to develop an understanding of some of the basic properties of 
this model, many people have turned to mean field theory. 

To obtain mean field results for spin systems, there are two special 
models which are often studied, and for which certain exact results can be 
obtained. The first model corresponds to an infinite-range interaction, and 
the second corresponds to an infinite-dimensional lattice, s the Bethe lattice 
illustrated in Fig. 3. For many other systems (e.g., ferromagnets) the phase 
structures of these two models agree with each other 6 and with those of 
other mean field approaches. 

The infinite-range model was introduced for spin glasses by 
Sherrington and Kirkpatrick (SK). Cs~ In that model every spin interacts 
equally with every other spin. Using the replica method, Sherrington 
and Kirkpatrick obtained a solution. Later work by de Almeida and 
Thouless (6) revealed that the SK solution was unstable, and that the 

s The identification of the Bethe lattice with an infinite-dimensional lattice is geometric. The 
Bethe lattice cannot be embedded in a finite-dimensional lattice; alternatively, the number of 
steps that can be reached in an N-step walk ( ~ N  a in d dimensions) grows exponentially 
with N. 

6 Specifically, the phase diagrams and critical exponents agree, although the numbers of states 
clearly do not. 
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correct solution should have a spin-glass phase in the presence of an exter- 
nal magnetic field. The presumably correct solution to the SK model (the 
"replica-symmetry-broken" solution) was obtained by Parisi/7) However, 
the methods which were used were quite unconventional, and the rela- 
tionship to finite-dimensional spin glasses remains unclear. 

Compared to the infinite-range model, analysis on the Bethe lattice is 
more straightforward. In particular, the Bethe lattice has two main advan- 
tages over the SK model: (1) the interactions are short range; (2) the dis- 
tribution of single-site magnetizations can be described by exact recursion 
relations. On the other hand, the spin-glass model is more difficult to 
formulate on the Bethe lattice because the boundary spins are a finite 
fraction of the lattice. Consequently, different boundary conditions can lead 
to different behaviors. For example, free boundary conditions lead to 
uninteresting behavior. Because there are no loops on the Bethe lattice, 
with free boundary conditions it is possible to start at the center of the 
lattice and minimize every interaction energy simultaneously. In contrast, 
when the boundary conditions are fixed, the above scheme results in an 
energy cost which scales with the volume due to "broken bonds" at the 
boundary. Thus, in the Bethe lattice spin glass, fixed boundary conditions 
are responsible for frustration. For a more detailed discussion of the role 
of boundary conditions see Section 2. 

Early work on spin glass models on the Bethe lattice was done by 
groups in Tohoku (s) and Tokyo, ~ who derived recursion relations for the 
Ising spin-glass model and found a spin-glass transition temperature. 
Neither group directly addressed the question of boundary conditions. 
Nonetheless, using a self-consistent probabilistic approach, the Tohoku 
group obtained paramagnetic, ferromagnetic, and (nonmagnetized) spin- 
glass phases in accord with those established here. On the other hand, the 
Tokyo group of Ueno and Oguchi concluded that for the same model the 
spin-glass phase and the ferromagnetic phase were preempted by a random 
ordered phase, which is now understood to be the consequence of 
"unfrustrating" boundary conditions. 

Bowman and Levin (a~ examined the entropy of the spin-glass state. At 
low temperatures they found that when the boundary was included (i.e., a 
Cayley tree) the entropy was nonnegative at low temperatures, whereas 
when the boundary was ignored, the entropy became negative at low tem- 
peratures for sufficiently large coordination number. (The fact that the 
replica-symmetric solution to the infinite-range model had negative entropy 
was the signal that it was an unphysical saddle-point self-consistent solu- 
tion. On the Bethe lattice, the effects of the boundary make the analogous 
solution correct.) 

Finally, there is the work of ref. 11 and of ref. 2, of which this work is 
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a continuation, and ref. 12, which summarizes some of the results which 
will be presented here. In ref. 2 the recursion relation was derived and 
analyzed rigorously for a symmetric distribution of bonds. More recently, 
Kwon and Thouless (13) studied the zero-temperature recursion relation for 
symmetric and asymmetric bond distributions. We incorporate their results 
in our phase diagram (Fig. 1). 

The results described above and those obtained in this work are in 
qualitative agreement with certain experiments. 7 For our work, the most 
relevant aspects of the temperature vs. concentration phase diagrams 
are reentrance (i.e., at certain fixed concentrations, as the temperature 
is lowered, there is a series of phase transitions from a disordered 
paramagnetic phase, to a ferromagnetic phase which has long-range 
magnetic ordering, to a spin glass which has no long-range magnetic 
order), (14-16) and the existence of an intermediate magnetized spin-glass 
phase. (17'18) The most relevant aspect of the temperature vs. field phase 
diagram is the existence of a phase transition in nonzero external field. (19'2~ 
For a general discussion of experiments see ref. 3; for a discussion of 
experiments specifically related to this work see ref. 21. 

1.2. Methods,  Results, and Organization 

In Section 2 we introduce the recursion relation for single-site 
magnetizations, which was derived rigorously (but rather incomprehen- 
sibly) in ref. 2. (A simpler, but equally rigorous derivation is given in 
Appendix A.) Most of the rest of this paper is devoted to the study of the 
solutions of this recursion relation as a function of temperature and 
fraction 2 of ferromagnetic bonds. We use probabifistic methods and 
bifurcation theory to derive the phase boundaries illustrated in Fig. 1. The 
results we obtain are rigorous throughout the paramagnetic phase and in 
a neighborhood below the critical line. 

In Section 3 we determine the paramagnetic phase boundaries; a proof 
of global stability of the paramagnetic fixed point is relegated to 
Appendix B. Properties of the spin-glass phase are studied in Section 4. 
Somewhat surprisingly, we find that in a neighborhood of the phase 
boundary the character of the spin-glass phase remains the same as in the 
symmetric case. For example, the distribution of single-site magnetizations 
is independent of 2. The ferromagnetic phase is analyzed in Section 5. 
While this phase is less controversial, the bifurcation analysis is more 
challenging here than at the spin-glass transition. In order to describe the 
ferromagnetic state, we construct a continuous family of complete sets of 

7 We caution the reader that the results described here are not found in all experiments. 
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analytic functions, which, unlike the spin-glass solution, varies with the 
thermodynamic parameters. 

In Section 6 we analyze the multicritical point (Pc,)~u) where the 
spin-glass and ferromagnetic phase boundaries intersect. While the spin- 
glass and ferromagnetic transitions are regular critical points with a single 
degree of freedom giving rise to a codimension-one bifurcation, at the mul- 
ticritical point there are two degrees of freedom, giving rise to a codimen- 
sion-two bifurcation. 

The magnetized spin-glass (MSG) phase is discussed in Sections 6 of 
this paper and Section 2 of the companion paper. The phase boundary 
between the spin-glass phase and the neighboring magnetized phase 
(Section 6) is determined by the instability of the symmetric spin-glass 
density with respect to small perturbations in the mean. Because this phase 
boundary bends to the right of the line 2 = ~u, the spin-glass phase is 
reentrant. The ferromagnetic-MSG phase boundary (ref. 1, Section 2) is 
determined by divergence of the Edwards-Anderson susceptibility 

1 

t,J 

where angle brackets denote the thermal average, the overbar denotes the 
average over quenched bonds (i.e., the disorder average), and N is the 
number of spins in the system. The fact that ~EA diverges before we cross 
the zero-magnetization phase boundary establishes the existence of an 
intermediate magnetized spin-glass phase. 

In Section 3 of the companion paper we calculate ;~EA for a symmetric 
distribution of couplings and a nonzero external field. We find that ZEA 
diverges crossing a curve h(T) which is the de Almeida-Thouless line (see 
Fig. 2). Thus the spin-glass transition persists in the presence of an external 
field. 

Finally, in Section 4 of the companion paper we end with a summary 
of our results, and a discussion of the relationship between the Bethe lattice 
spin glass and the infinite-range model. We show that in the formal limit 
where the coordination number of the lattice tends to infinity, the recursion 
relation becomes the so-called SK equation. ~s) The solution of this equa- 
tion is the replica-symmetric solution of the SK model. Thus, at least in a 
formal sense, the correct solution on the Bethe lattice is analogous to the 
(unphysical) replica-symmetric solution of the infinite-range model. 

2. THE RECURSION RELATION A N D  
B O U N D A R Y  C O N D I T I O N S  

The treelike structure of the Bethe lattice allows us to derive a recur- 
sion relation which gives properties on a given level n + 1 in terms of the 
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same properties on level n. Here we will work on the half-space tree; a 
simple formula given in Appendix A relates half-space quantities to the 
corresponding quantities on the full tree. The lattice with forward branching 
ratio two is illustrated in Fig. 3. As previously stated, the Hamiltonian for 
this model is the Edwards-Anderson Hamiltonian, (4) 

HEA = -- Z Ji, jaeaS--Z H'ai (2) 
( i , j )  i 

where the first sum is over nearest neighbor pairs, and the second sum is 
over sites. The bonds are of equal strength, and distributed, independently, 
according to J i j  = OijJ, where 

0 ~ + 1 with prob. 2 
ij = (3) ( - 1 with prob. 1 - 2 

The external fields H i may or may not be uniform. 
Our recursion relation is an equation relating the single-site 

magnetizations (cr x ) .  on different levels of the tree. Here ( a  x ) .  is the ther- 
mal expectation of the Ising spin ax in the uncoupled system in which x is 
viewed as the root of its own tree--i.e., the bond connecting x to the site 
above it on the isotropic tree has been severed. (See Fig. 3.) Occasionally 
we will refer to ( a x )  u as a "half-space" magnetization, since x is uncoupled 
from the upper portion of the full lattice. Note that for fixed boundary con- 
ditions, (ax)u is a function (i.e., a random variable) depending on the 
coupling realization. In our formulation, the thermal expectation is taken 
in a system in which each site is viewed as the root of its own tree. 

In refo 2 it was shown that in the absence of external fields, if ( a~ )u  
is the value of the magnetization at the origin, then 

p(O~,y(%>u+ox, z@z>u) 
( a x ) " -  1 + p2Ox, yOx, y(ay)u (az) ,  (4) 

where p = tanh(J/kB T), and ( % ) ,  and ( a 2 ) ,  are the magnetizations of 
the decoupled systems (i.e., the magnetizations that would be calculated 
were these taken to be the origin). An alternate derivation of this recursion 
relation is given in Appendix A, along with the generalization of (4) to 
nonzero external fields. 

Since the ( 6 i )  u a r e  random variables, we are led to study the distribu- 
tional equation 

p(Ox, yY+Ox,~Z) F.(y ,z;O~y,  Ox, z) (5) 
~ = d  I + p2Ox, yOx, y Y Z  -- 

where Y and Z are independent and identically distributed (i.i.d.) random 
variables, and the subscript d indicates that this an equality in distribution. 

822/61/5-6-3 
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The equivalent equation for the density of single-site magnetizations on 
level n + 1, p,+I(X) of X, is given in terms of a convolution of the density 
on level n, p,(Y) of Y and pn(Z) of Z, by 

f + l f + l  p , (Y )  p , (Z )  E [ 6 ( X - F * ( Y ,  Z; Ox, y, 0x, z))] d Y d Z  (6) Pn+l(X)= -1 -1 

where E denotes the expectation over the bond distribution (3), i.e., 
E l f ( O ) ]  = 2f(1) + (1 -- 2) f ( -  1). 

Equation (6) can be viewed as a discrete-time dynamical system in the 
function space of probability measures. Boundary conditions on the tree 
correspond to initial conditions for the dynamical system. Iteration of the 
equation corresponds to moving from one level to the next, away from the 
boundary toward the center of the tree. We study the stable self-consistent 
fixed points of (5), that is, the existence of X, Y, and Z satisfying (5) with 

Y = a Z  (7) 

These solutions describe half-space properties deep inside the tree. In Fig. 4 
we illustrate how the iteration scheme evolves when the system is almost 
completely ferromagnetic. 

This recursion relation was analyzed in the symmetric case (2 = 1/2) 
by Chayes eta/. (2) They showed that there is a spin-glass transition at a 
temperature determined by pG=l /w/2 ,  above which the system is 
paramagnetic, and below which the Edwards-Anderson order parameter 

qeA = E(X2) (8) 

is strictly positive. 
Before we begin our analysis of the asymmetric case, we simplify our 

notation by making a change of variables. It follows from the Fortuin- 
Kasteleyn-Ginibre (FKG) inequality (22) that no limiting distribution can 
have support outside [_#oo, #oo], where #~o is the magnetization of the 
purely ferromagnetic system (2 = 1) at a given value of p, 

( 2 p -  1) 1/2 
#OO(p) _ (9) 

P 

Therefore, if we rescale the random variables according to 

X* = X/#  ~, Y* = Y/#~ ,  Z* = Z / #  ~ (10) 

and define #2 = 2p - 1, then the recursion relation (5) takes the form 

p(Ox, y y t  + Ox, z Z*) =_ F*(Y*, Z*; Ox y, Ox, z) (1 1) 
X* =d 1 + #20x, yOx, z y t z t  
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Fig. 4. Iteration of the recursion relation corresponds to a dynamical system in a function 
space. The results illustrated here were obtained numerically by integrating (6), with 
F*( Y, Z; Ox, e, Ox, y) replaced by F(Y, Z; 0) [Eq. (12)]. Boundary conditions po(X) are initial 
conditions for the dynamical system. In this case we have specified that po(X) varies linearly 
from P0(-1)= 0 to p0(1)= 1. After one iteration Pl begins to develop some structure. After 
five iterations (Ps) this structure becomes more pronounced. Deep inside the tree p,(X) 
approaches the fixed point p*, which is sharply peaked near X= +1. [p(X)= 6(X-1)  is the 
corresponding fixed point for the fully ferromagnetic system]. 

where the d is t r ibu t ions  are suppo r t ed  on the t empera tu re - independen t  
in terval  [ -  1, 1]. 

At  t imes it will be convenient  to make  an  add i t iona l  simplif ication.  
Let t ing  X * = OX*, Y* = Ox, y Y*, and  Z* = Ox, z Z  r, where 0 is the sign of  the 
b o n d  connec t ing  X to the rest of  the full-space lattice, Eq. (1 ! ) becomes  

pO( Y* + Z ~; ) = F( Y~;, Z~;; O) 
X~ =a 1 -k lt2Y~;Z ~ (12) 

We can ob t a in  X t f rom Y* by a single app l i ca t ion  of  the recurs ion relat ion,  
with the O's removed:  

P( Y* + Z:~) (13) 
X t = d  1 + #2Y~Z~ 
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When our calculations involve moment analysis, it will be more convenient 
to use (11), because certain terms in the moment expansions will have 
smaller coefficients, whereas when we consider the scaling solutions and 
perform bifurcation analysis, Eq. (12) will prove to be more tractable. To 
simplify notation, we will now drop the superscripts on the random 
variables, the subscript x on Ox, y and 0 ... .  and the subscript d on the 
distributional equality. 

3. THE P A R A M A G N E T I C  PHASE BOUNDARIES  

The first step in our analysis of the magnetic recursion relation is to 
determine the critical lines which separate the paramagnetic phase from the 
other phases which exhibit long-range order (spin glass or ferromagnet). 
These transitions are second order and are marked by a nonzero value of 
the order parameter which describes the phase. These order parameters, 
m=E(X)=~Xp(X)dX,  the magnetization of the ferromagnet, and 
q =E(X 2) -=[ XZp(X)dX, the Edwards-Anderson order parameter for the 
spin glass, are given by the first and second moments of the fixed-point 
density p of the recursion relation. 

The paramagnetic solution is the degenerate distribution, p(X)= 6(X), 
or equivalently X =  Y= Z - 0 ,  corresponding to no long-range order. This 
solution is seen to be a fixed point of the recursion relation for all values 
of p and 2. The paramagnetic phase boundary is the locus of points at 
which this solution becomes unstable. As one crosses these curves there are 
bifurcations in the solution of the recursion relation, yielding nontrivial 
solutions p(X). We begin with a few simple statements regarding the 
stability of the paramagnetic solution with respect to small perturbations in 
the single-site magnetization. These arguments are relatively easy to follow 
and they also give the right phase boundary. In Appendix B we prove the 
corresponding global stability. The global result rules out the possibility of 
an ordered phase in this region of the phase diagram. 

P r o p o s i t i o n  1. The paramagnetic solution is stable with respect to 
small variations in the single-site magnetization when both of the following 
conditions hold: 

1. 2 p ( 2 2 - 1 ) < 1 .  
2. 2p2 < 1. 

Remark. In the limiting case of equality, condition 1 gives the phase 
boundary with the ferromagnetic phase, while condition 2 gives the phase 
boundary with the spin-glass phase. 
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Proof. Assume that Y is not identically zero, but that 
P rob [ -Y>e]  = 0  for some small e. This corresponds to a small perturba- 
tion of the paramagnetic distribution Y= 0 in function space. Hence the 
distribution has a small first moment, say E ( Y ) =  ~m, where m is of order 
one. To avoid any ambiguity in the sign, we consider the absolute value of 
the magnetization. To prove condition 1, we define [m,] = e  -1 ]E(Y)i and 
I mn + i I = e -  1 ]E(X)]. Taking the expectation of the recursion relation (11) 
yields 

Imn+ 11 = 2p(2)o - 1) Im,I [1 + O(e2)] (14) 

It follows that the absolute value of the first moment contracts if 
2p(22 - 1) < 1 and grows if 2p(22 - 1 ) > 1. 

Now consider the behavior of the second moment, independent of the 
first (i.e., set the first moment equal to zero). Squaring the recursion 
relation, we obtain 

X 2 _ p2( y2 + y2 + 20y0z YZ)  (15) 
( l  "Ji- ]220yOz YZ)  2 

Upon defining q, = e - z E ( Y  2) and q , + l =  e 2E(X2), we find that 

q ,+ l  = 2pZq, [ 1 + O(e2)] (16) 

indicating that the second moment contracts if 2p 2 < 1 and grows if 2p 2 ~> 1. 
The paramagnetic solution is stable if and only if both qn and Im,[ 
contract. | 

In addition, we have the following theorem. 

T h e o r e m  2. The paramagnetic solution is globally stable when 
both of the following conditions hold: 

1. 2p(22-1)~<1 
2. 2p 2 ~< 1 (17) 

Remark on Proof. The complete proof is given in Appendix B. The 
method used is moment analysis, where we show that any initial condition 
leads to a solution of the recursion relation (11) deep inside the tree which 
has first and second moments arbitrarily close to zero. Consequently, 
p(J() = 6(X) is the unique globally attracting fixed point of (6). | 

These curves dtermine the paramagnetic phase boundary, and are 
illustrated in Fig. 1. They intersect at the multicritical point (J~N, PC)" The 
boundaries between distinct ordered phases also branch from this point. 
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4. T H E  S P I N - G L A S S  P H A S E  

In this section, we characterize the spin-glass phase in a variety of 
ways. First, in Section 4.1 and Appendix C we show that the Edwards-  
Anderson order parameter  qEA is positive, indicating the onset of some sort 
of long-range order in the system. While the onset of positive qEA proves 
that a phase transition has occurred, it does not give us any explicit infor- 
mation about the nature of the phase. In order to obtain more information, 
we study properties of the stable fixed point p(X) (see Fig. 5), which is 
symmetric in the spin-glass phase. The width of p(X) is proportional to 
qEA 1/2 and we obtain p(X) using bifurcation theory (Sections 4.2 and 4.3). 
One noteworthy feature is that, at fixed temperature in the spin-glass phase 
near the paramagnetic phase boundary, p(X) does not change when the 
fraction of ferromagnetic bonds is varied. Finally, it is worth mentioning 
that in experimental systems, the spin-glass transition can be characterized 
by divergence of a nonlinear (quadratic) susceptibility. In ref. 1, Sections 2 
and 3 we calculate a different quadratic susceptibility, the Edwards-  
Anderson susceptibility, and show that it diverges at the spin-glass phase 
boundary. 

! I [ 

Spin Glass Densities 

p (x )  

0 
-I .0 1.0 

p =  

-0.5 0.0 0.5 
MAGNETIZATION X 

Fig. 5. The fixed-point density of single-site magnetizations in the spin-glass phase for 
various values of p. In every case the density is symmetric about X = 0, and as p increases (T 

,~ 1/2 decreases) the width, which is proportional to uEA, increases. These results were obtained 
numerically by iteration of the recursion relation as in Fig. 4. 
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4 .1 .  B o u n d s  on  t h e  E d w a r d s - A n d e r s o n  O r d e r  P a r a m e t e r  

In the paramagnetic phase (Section2 and Appendix B), moment 
analysis indicates that the unique globally attracting fixed point of the 
recursion relation has second moment q = 0, or, equivalently, p ( X ) =  5(X). 
In this section and Appendix C we show how similar moment analysis of 
the recursion relation [Eq. (11)] leads to positive upper and (more impor- 
tantly) lower bounds on the second moment qL ~< q ~< qv near the spin-glass 
phase boundary (see Fig. 6). Here q is the Edwards-Anderson order 
parameter qEA, and the onset of positive q marks the phase transition. 

Moment analysis allows us to prove global results. Using the moment 
inequalities, we obtain bounds in a manner analogous to those used to 
determine stable fixed points for dynamical systems. However, because we 
have inequalities rather than equalities, instead of determining a fixed point 
p(X), we obtain a stable range of allowed values for particular moment(s) 
of p(X). 

In the symmetric case (2 = 1/2) our analysis was greatly simplified by 
the fact that we could a priori ignore all odd moments. In the asymmetric 
case, a separate argument shows that we can ignore these terms for 2 < 3/4; 
however, in general, these terms must be retained. As a consequence the 
analysis is much more tedious; the details are provided in Appendix C. 

T h e o r e m  3. In a finite neighborhood of the phase boundary, 
P > Pa = l /x/2  and 1/2 < 2 < 2N, iterates of the second moment q, even- 
tually obey the bounds qL < q, < qv-, with 

qL= V(p, 2) IP-  P~I (18) 

q 

qu 

g 
i pG=~ p o 

Fig. 6. Upper  and lower bounds on qEA obtained by moment  analysis. Because these bounds 
have the same power law asymptotically at the transition, we can extract the critical exponent 
fl = 1. As described in Theorems 2 and 3, these bounds hold throughout  the paramagnetic 
phase, and in a neighborhood of the phase boundary in the spin-glass phase. 
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and 

qv= W(p, 2 ) [ P - P c [  (19) 

with 0 < V(p, 2) < W(p, 2) < oo. Furthermore, for 2 < 3/4, V(p, 2) = 
V(p, 1/2) and W(p, 2) = W(p, 1/2), and limp ~ pc V(p, 1/2) = 
limp~ pG W(p, 1/2)= 1/pGi ~2. 

Both the upper and lower bounds on q in the spin-glass phase are 
asymptotically of the form q ~  [2p 2 -  1[ ~ [P-Pc[. Hence, we obtain the 
critical exponent/? = 1. 

Corollary. For 2 <,~N, in a finite neighborhood of the spin-glass 

critical point p > p G =  l /x /2  , the leading behavior of the Edwards- 
Anderson order parameter is linear in the sense of upper and lower bounds, 
i.e., 

qEA~ [P--P6[ ~ 

where fl = 1. Furthermore, for 2 < 3/4 the coefficients of the asymptotic 
forms of the upper and lower bounds agree in the sense that 

lira qEA 1 
P ~ P G  ]P-Pc[ P6P~ 

Remark. The restriction 2 < 3/4 arises for technical reasons. Indeed, 
the bifurcation results obtained later in this section indicate that as 
P ~ Pc, qEA/[P -- PC] should approach l/p611 ~ whenever 2 < 2N. 

4.2. The Spin-Glass Scaling Solut ion 

To obtain the spin-glass p(X), we must return to the full recursion 
relation (6), regarded as an infinite-dimensional dynamical system acting in 
function space. Recall that the paramagnetic solution p(X)= 6(X) is the 
unique globally attracting solution of the recursion relation (6) up to the 
critical line (Section 2 and Appendix B). Only inside the phase boundary 
does p(X) have any nontrivial structure. In the previous section we proved 
that approaching the phase boundary, q approaches 0, indicating that the 
solution continuously approaches the paramagnetic fixed point. In this 
section we rescale the magnetizations to keep q finite as p ~ Pc,  and 
determine the limiting solution for the rescaled variables along the phase 
boundary. Before rescaling, the solution along the phase boundary 
p(X) = 6(X) cannot reveal any of the structure of the spin-glass solution. 

Define A = p - P c .  From our results on the asymptotic form of the 
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second moment near the phase boundary (i.e., the corollary to Theorem 3 
in Section4.1) we find that, to keep q finite as we approach the phase 
boundary, the magnetizations should be rescaled according to 

X Y Z 
X* - Y* = Z* (20) 

We rewrite the recursion relation (12) in terms of these variables, 

pO( Y* + Z*) 
x *  - 1 + ~2 3 Y , Z *  - F~(Y*, Z*;  0) (21) 

where #2 = 2p - 1 and the random variables take values only in the interval 
[-1/x/-A, 1/.x/-A ]. We denote the density of the rescaled random variable 
X* by p~(X*). 

When A = 0 the recursion relation takes the particularly simple linear 8 
form 

X* = p~O( Y* + Z*) (22) 

where the rescaled variables take values in ( - o %  +oo).  It is, however, 
worth emphasizing that the solutions to (22)~the  scaling solutions--are 
not a priori the A ~ 0 limit of the positive A solutions of (21) (should such 
solutions exist), in the following proposition we show that the solutions Po 
of (22) are Gaussians of arbitrary width, whereas in the next section we 
will find that there is only one solution as A ~ 0. 

P r o p o s i t i o n  4. Let X*, Y*, and Z* be random variables which 
satisfy (22), where Y* and Z* are i.i.d., Pc = 1/xf2, and 0 = __+1. Then the 
fixed-point density po(X*) is a Gaussian, with mean zero and arbitrary 
variance: 

po(X*) = fg;(X*) = (~a 2) I/2 exp[ -x2/ f f  23 

ProoL Our results from moment analysis indicate that after rescal- 
ing, the second moment ~2 must be nonzero and finite. Squaring (22) and 
taking the expectation, our equation for the first moment, e l = E ( X * ) ,  
becomes 2p~cq = ( 1 - 2 p ~ )  e2 =0.  Now raising (22) to any odd power n 
and solving for c~, in terms of all preceding moments establishes that all 
odd moments are proportional to ~1, and are consequently also equal to 
zero. Hence p(X*) is symmetric. Therefore, the 0 can be dropped, and (22) 

s Note that while this recursion relation is linear in the random variables, the corresponding 
integral equation for the distribution of the random variables is quadratic. 
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is simply the stable law X * =  (Y* +Z*)/xf2 , for which a Gauss ian  is the 
unique solution of finite width. | 

We suggest that  the reader pause for a m o m e n t  to appreciate the sim- 
plicity of the spin-glass scaling solution. As we will see, the corresponding 
analysis a long the ferromagnet ic  phase bounda ry  is much  more  com- 
plicated, because the scaling solution po(X*) is not  a well-known function 
of Jr*. In addition, it is worth  point ing out  that  the spin-glass scaling solu- 
t ion remains the same along the entire phase boundary.  This is the first 
hint that  despite large bond  asymmetry ,  in the spin-glass phase p~(X*) [o r  
equivalently p(X) of the original var iables]  is the same as when 2 = 1/2. In 
Section 5 we show that  this is not  the case in the ferromagnet ic  phase. 

4.3. Ex is tence  of  a Sp in -G lass  So lu t ion  

Loosely speaking, the transit ion f rom the paramagnet ic  phase to the 
spin-glass phase is like a pitchfork bifurcation, except there is only one 
spin-glass solution instead of two (see Fig. 7a). For  p<~p~ the unique 
globally at t ract ing solution of the recursion relation is p(X)= 6(X), the 
paramagnet ic  solution. At Pc, g)(X) becomes unstable, and a new spin-glass 
solution p(X) emerges. The width of p(J() is p ropor t iona l  to qEA 1/2 and as 
the transit ion is approached  f rom the spin-glass phase, more  and more  of 
the mass  of p(X) is concentra ted near  the origin (q~A--'  0). The limiting 
solution p(X) at the phase transit ion is 6(X), which exhibits none  of the 
propert ies  of p(X) within the ordered phase. Consequently,  we cannot  per- 
form a bifurcation analysis directly using 6(X). We overcome this p rob lem 

P 
pcx) 8cx)  

-- = !......'~1.7 . . . . . . . . .  
A=O A ~  

rescal ing" 

.., ........... .... 

�9 '. $G 

" ! 

".... any width ..." 
�9 " . . .  . . . "  

ZX--O ...................... 

(a) (b) 

Fig. 7. (a) The P ~ S G  transition is like a pitchfork bifurcation, except only one new 
solution emerges at the transition instead of two. When A ~< 0 the unique globally attracting 
solution of the recursion relation is 0(1I) = 6(X). At A = 0 a new spin-glass solution emerges, 
and 6(X) becomes unstable. (b) At A = 0 rescaling replaces the paramagnetic fixed point 6(J() 
with a continuum of scaling solutions N~. The scaling solution with the correct variance cr 
bifurcates, giving rise to the spin-glass solution for A > 0. 
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by the rescaling (20), which gives rise to a continuum of scaling solutions 
along the phase boundary (Fig. 7b). 

The transformation which leads to the scaling solution is singular 
along the phase boundary. Thus, there is no a priori reason to believe that 
the solutions we found (Proposition 4) are related to the distribution of 
magnetizations inside the phase boundary. On the other hand, the 
instability of the paramagnetic solution 6(X) at this point suggests that new 
solutions may bifurcate from some (or in this case a particular one) of 
these Gaussians. In this section we show how the spin-glass transition is 
associated with such a bifurcation. 

Instead of simply calculating qEA inside the phase boundary, we look 
for the magnetization density which satisfies the full nonlinear recursion 
relation 

1/./~ f 1/.,~ 
p3(x) = 3-1/../5 J w,/5 P3(Y) p3(z) E [ 6 ( x -  F~(y, z; 0))3 dy dz (23) 

where - 1/x/A ~< x, y, z ~< + 1/a/-A, and 

pO(y + z) 
Fa(y, z; O) = 1 + A#2yz (24) 

For future reference, note that Eq. (24) can be written in the form 

p~ = B~ [p~, p~J (25) 

where B~ is the bilinear operator 

f 1/.,~ ~1/~ 
B~[f, g] =J-w,~5 J-w,~5 f ( y )  g(z) E [ f ( x -  F~(y, z; 0))] dy dz (26) 

From the above form, it is clear that B~ has an "integral-preserving" 
property, i.e., if f, g E L  1, then 

We also define the operator ~ according to 

~f~ (f)  = B~ If, f ]  (28) 

Because of the presence of the 6-function, the integrals in (23) and (26) 
may seem to be poorly defined. However, without loss of generality, these 
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can be interpreted in the usual way, leading, for example, to the rather 
complicated formula 

~(p,~) = p2 J_ ~/,,/~ p,~(y) PA (p dy -_ ]7~yjL(p_-~)2_l  
_ ( x+py  .~ (1-Alx2y 2) 

+p(1  ,~) f+il,j~_ PA(Y) P,~ 
-,/,/~ \ - p  - ,~s;:<y) ( ---p--- ~ y ) ~  ay 

(29) 

where in the above equation we have also explicitly written out the result 
of the expectation over the bond distribution [the E in Eq. (23)]. 

If we define 

~ ( p ~ )  = ~ ( p a )  - p~ (30) 

then zeros of ~ correspond to fixed points of the recursion relation. To 
obtain a solution Pt at a given point zl~ in terms of a known solution Po 
at A0, we linearize the operator as follows: 

= ~ 0 ( P ~ 0 )  + ~ 

+ O(x 2, s e~:) 

( ~ 0 ]  (0) 

(31)  

where the first term in the expansion corresponds to the known fixed 
point, and therefore is equal to zero, the second term is obtained by 
straightforward differentiation of (29) with respect to A, and the third term 
is Frechet derivative of the operator evaluated at the known solution. 

At the phase transition, the linear operator •Ro/c3p is not invertible: 
there is a zero mode (zero eigenvahe) associated with the indeterminacy in 
the width of the scaling solution. Thus, to find a solution for A > 0, we 
must restrict to the subspace orthogonal to this mode. As is standard in 
such situations, we accomplish this by using a version of the center 
manifold theorem. (See Fig. 8.) The main result in this section will be a 
proof of the existence of a density which satisfies (29) for small positive 
values of zl. The nonlinearities of our function select the width of the 
bifurcating scaling solution, so that in terms of the rescaled variables, our 
density converges to the Gaussian fixed point fq~(X*) with the correct 
variance a 2. 

To ensure that the final solution has no support outside the compact 
interval [ -1 /x / -A,  1/x/A], we make a simple transformation which allows 
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Raop 

scaling 

Fig. 8. At a phase transition we apply the center manifold theorem to find new solutions. 
This theorem reduces the problem of searching all of function space for a solution to that of 
searching a restricted space with one dimension per zero mode. 

us to work in R. We define qS~(x)=~b(xxflA), so that  ~b~(x): 
[ - 1 / x / A  , 1/x/-A ] ~ R, where q~(x )  is the identity in a ne ighborhood  of 
the origin. This t ransformat ion is discussed in detail in ref. 2, Section IV.a. 
The t ransformat ion has two impor tant  properties. First, it is invertible, so 
that  we can work on all of 0~ and then t ransform back to the compact  
interval. Additionally, ~ba(x) rapidly approaches the identity as A 
approaches  zero. It  is this second feature which allows us to proceed with 
our  calculations, ignoring the transformation.  In particular, at times it will 
be necessary to differentiate the full recursion relation with respect to A, 
and evaluate the result at A = 0. Because ~ ( x )  is the identity in a neigh- 
b o r h o o d  of the origin, the derivative has the same form as the function 
one would calculate in the absence of ~b~(x). However,  by using this 
t ransformation,  we know our  solution is contained in the desired interval. 

4.3.1.  The  Linear O p e r a t o r  and its E igenfunct ions .  To 
apply the center manifold theorem, we begin by linearizing the operator  ~0 
[Eq. (30) evaluated at A = 0]  about  any one of the scaling fixed points 
po(X*) = ~ ( X * ) .  Next  we calculate the eigenfunctions and eigenvalues of  
thls operator.  The eigenfunctions span the function space for the bifurca- 
tion, which in this case may  be taken as L2([~(x)] 1d x)c  Ll(dx) .  9 

9 Although we are interested in positive solutions in Ll(dx), i.e., densities, it is easily seen that 
LZ([~g(x)] -1 dx) cLl(dx). However, the spectral questions are better addressed in the 
more restrictive spaces. This latter point, although taken into account, was not stated 
explicitly in ref. 2. 
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When the recursion relation is linearized about the scaling fixed point 
po(X*) we obtain the following linear operator: 

L o f ( x ) = \  c3p /p=po ( f (x) )  

x 

p - - f  (x) (32) 

To study the properties of this. operator, we first look for its eigenfunctions, 
which satisfy 

L oL(x)  = v. L ( x )  (33) 

where v, is the associated eigenvalue. For the spin glass, Po(Y) in Eq. (32) 
is replaced by fig(y); however, here we write the equation in a more 
general form which will apply at the ferromagnetic transition as well. 

The eigenfunctions of (33) were determined in ref. 2, and by direct 
substitution are easily seen to be 

(34) 

where a 2 is the variance of the Gaussian ~r and Hn is the nth Hermite 
polynomial. The associated eigenvalues are 

= f2p ~ -- 1, n even (35) 
vn (2pn(22-  1)-- 1, n odd 

A plot of the point spectrum as a function of 2 appears in Fig. 9. 
With the exception of aYg, and c~,  with eigenvalues 1 and 0, respec- 

tively, the eigenfunctions have negative eigenvalues. The first eigenfunction 
ff:  is simply the Gaussian fixed-point density. The associated eigenvalue is 
1, and fig is a trivial "growth mode," which can easily can be removed by 
redefining the operator as shown in ref. 2, Eq. (5.15). On the other hand, 
along the spin-glass phase boundary, ~r has eigenvalue zero, which 
prevents the linear operator from being invertible. Perturbations in the c5~ 
direction correspond to moving from one of the Gaussian scaling solutions 
fro(X*) to another ~g/c(x*)= C~o(cX*), since 

~ ( X * )  - d ce~/c(X,)]c (36) 
- d c ~ O  ~ : i  
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Fig. 9. Point spectrum plotted as a function of )~. The spin-glass eigenfunctions correspond 
to 2 < 2~, and the ferromagnetic eigenfunctions correspond to 2 > 2N. Note that the eigen- 
values are doubly degenerate at 2 = 2 N. 

The linear convolution operator (32) may be viewed as the bilinear 
operator B~ [Eq. (26)] evaluated at A = 0: 

(37) 

In the bifurcation analysis it is necessary to know how the bilinear 
operator acts on pairs of eigenfunctions. From the calculations of this 
section, we have 

f n+rn B ~ = p f#,+m, n + m e v e n  (38) 
~ If#"' fr ] (p"+m(2;t--1)fY~+m, n + m  odd. 

Again the reader should pause and appreciate the remarkable simplicity of 
the relation above. In the ferromagnetic phase, life is not so simple; pairs 
of eigenfunctions do not always combine to yield another eigenfunction 
under the action of B o. 
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4.3.2.  B i f u r c a t i o n  of  the  Spin-Glass Solut ion.  The bifurca- 
tion of the spin-glass solution is illustrated in Fig. 8. In this section, armed 
with the eigenfunctions of the linear operator, we are ready to prove the 
results illustrated in this figure. We begin with a precise statement of the 
relevant version of the center manifold theorem. 

Center Mani fo ld  Theorem. Let X, Y denote Banach spaces, and 
NA: X--* Y be a (~92 map defined in some neighborhood of (A =0 ,  P =Po), 
satisfying N~(Po)=0. Furthermore, suppose 6~o/6p- (6/6p)No(Po;.) 
is a linear Fredholm operator, with d imker(6No/6p)< ~ and 
dim coker(c~No/6p) < ~ .  If ~ e ker(6No/6p) and A is small enough, then for 

sufficiently small, there is a function g~,~(O)eX\ker(6Ylo/6p) such that 

N~(Po + e~p + g~,~) e coker(6No/6p) 

Moreover, for fixed 0, g,,~ is unique. 

Remark. This is a standard result in Liapunov-Schmitt  theory. A 
proof of the theorem and a discussion of related matters are given in ref. 23. 

At the spin-glass transition, the relevant Banach space is 
L 2 ( [ ~ ( x ) ] -  1 dx), which is spanned by the eigenfunctions { ~ } .  The map 
~ given in Eq. (30) is the convolution operator less the identity, and the 
linear operator 6Ylo/6p- 6/6p~o(Po;" ) is given in Eq. (32). The kernel and 
the cokernel both contain only the zero mode, ~ .  

Zeros of ~a are fixed points of the recursion relation. At A = 0 these 
are the scaling solutions Po = ff~. The above theorem tells us that 

(39) 

The function g ~  can be expressed as a linear combination of the even 
eigenfunctions {ff~n } starting at ff~. The function h~ A) can be expressed 
as a Taylor series in e and A. A fixed point of the recursion relation 
corresponds to a zero of h"(e, A). To obtain the fixed point for A > 0, we 
expand the map ~ for small, positive A. Equating powers of e and A on 
the opposite sides of Eq. (39), we choose a so that h~(e, A )=  0. This leads 
to an explicit proof of the existence of a fixed point. 

Details of the how the center manifold theorem is applied at the 
spin-glass transition are given in ref. 2, the main result appearing as 
Theorem 4.1, which we restate here. A related theorem, giving the same 
results in a different Banach space, follows as a special case of the results 
which we obtain at the multicritical point in Section 6.2. 

T h e o r e m  5. Provided that A is sufficiently small, there is a unique 
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one-parameter family of positive, symmetric L 1 functions p~ with 
IIP~ I]~ = 1, satisfying 

~ ( p ~ )  = 0 

The family has the property that 

lim p~ = fr 
A ~ 0  

where fgg is a normalized Gaussian of variance cr2: 

fgg = (~a2) -1 exp( -x2 /a  2) 

and (~a)2 = 2/[pc(2pc - 1)]. 

This guarantees the existence of a spin-glass solution for small, 
positive A. The method of proof is analogous to the method we will be 
using for the ferromagnet. Linear stability of the spin-glass solution is 
demonstrated in ref. 2, Section V, where the leading non-Gaussian correc- 
tion to p(X) is also explicitly calculated. 

Note that the spin-glass solution is symmetric, and at fixed tem- 
perature is exactly the same for the whole range of 2 along the spin-glass 
phase boundary. This is consistent with our results from moment analysis 
(Section 4.1 and Appendix C), but much more explicit. 

5. THE F E R R O M A G N E T I C  PHASE 

The ferromagnetic Ising model on the Bethe lattice is well understood. 
It is easily shown that at high temperatures the system is paramagnetic: 
p(X) = 6(X). As the temperature is lowered, there is a transition at Pc = 1/2, 
below which the system develops ferromagnetic solutions: p(X) = 6 ( X -  1) 
or p (X)= 6(X+  1). The state the system ultimately chooses depends on 
boundary conditions. 

It is natural to ask how the character of the ferromagnetic phase is 
altered by the inclusion of a finite fraction of antiferromagnetic bonds. The 
phase diagram (Fig. 1) illustrates that on the Bethe lattice, as in experimen- 
tal systems, ferromagnetism persists for a wide range of concentrations of 
antiferromagnetic bonds. We study p(X) near the paramagnetic phase 
boundary. (See Fig. 10.) There are two solutions, corresponding to positive 
and negative magnetization. When nearly all of the bonds are 
ferromagnetic, p(X) has a great deal of structure. One of the solutions has 
a strong peak near X = I ,  indicating that the system is mostly 
ferromagnetic, and a tiny peak near X =  -1 ,  reflecting the small but finite 

822/61/5-6-4 



:to 

6 I 
X = 0 . 9 9  I 
Pc = 0 . 5 1  I 

I 
4 I 

l 
I 
[ 
t 

(a) 

-2(11 - e j  0 a I 2 e  I 

X 
I.O 

x=o.95 (b) 
Pc=0.55 

0.8 

0.6 

0.4 

o.z  l 

O.C 
-2a l  -~l  0 a I 2a  I 

X 
Fig. 10. The scaled form of the fixed-point density Jg~ along the ferromagnetic phase bound- 
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result for an intermediate value of Pc, and (c) the result near the multicritical point. These 
results were obtained using Eq. (51), which gives a relationship between the function P0 at 
the two different arguments: k and k'=pr Numerically we generated these densities by 
specifying ~(k) in a small interval near the origin in k space, which essientially corresponds to 
choosing the value of cq. To obtain ~(k) for any k outside the specified interval, it is sufficient 
to iterate Eq. (51) until we return to the small interval. 
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Fig. 10. (Continued) 

probability that the origin is antiferromagnetically connected to the site 
above it. There is also an intermediate peak at X=O representing the 
possibility that the origin is connected to one of the sites below it with a 
ferromagnetic bond, and to the other with an antiferromagnetic bond. 
Moving toward the spin-glass phase, p(X) becomes more smooth in 
appearance, until finally, approaching the spin-glass phase boundary, p(X) 
approaches the symmetric spin-glass solution. While the ferromagnetic 
phase is generally thought to be less exciting than glassy behavior, we find 
that mathematically it presents many interesting problems on the Bethe 
lattice. 

5 . 1 .  T h e  F e r r o m a g n e t i c  S o l u t i o n  in  t h e  S c a l i n g  L i m i t  

We obtain explicit information about the ferromagnetic phase by 
studying the density of single-site magnetizations p(X). For each value of 
2 we define A=p-pc(2),  where 2pc(2)(22-1)=1. As we did in 
Section 4.2 for the spin glass, we rescale the magnetizations X o X * =  
X/,~fA (and Y and Z accordingly) to see the limiting behavior. The rescaled 



1 01 2 Carlson et  al. 

recursion relation is given in Eq. (21). In the scaling limit (A =0)  we are 
left with the linear scaled form of the recursion relation 

X* = pcO(Y* + Z*) (40) 

Equation (40) has the expected solutions at the two extreme points of the 
ferromagnetic phase boundary. At pc= 1/2, (40) is satisfied by 6(X-m),  
for arbitrary m, which is the anticipated solution for the pure ferromagnet. 
At Pc = Pc = l/x/2, where the spin-glass and ferromagnetic phase boun- 
daries meet, (40) is satisfied by a Gaussian of arbitrary width, as discussed 
in Section 4.2. For the intermediate values 1/2 < p c <  l/x/2, (40) is not 
satisfied by any well-known function. However, we can still prove the 
existence and uniqueness (up to the mean) of the scaling solution. We find 
that the ferromagnetic scaling solutions po(X*)= J~'(X*) vary analytically 
as a function of the ferromagnetic bias 2, and that they have a lot of 
interesting structure (see Fig. 10). 

Because Eq. (40) is linear, iteration of any initial distribution preserves 
the first moment 

E(X)=E(p~O(Y+Z))=2pc(22-I)E(Y)=E(Y ) (41) 

Therefore, the first moment m =  E(X)= ~ of a fixed-point distributions 
satisfying (40) will be arbitrary. On the other hand, when a nonzero mean 
cq is specified, (40) allows us to inductively determine all other moments. 
Raising (40) to the nth power, taking the expectation, and solving for c~n 
(n ~> 2), we obtain 

where 

_ c ~ k ~ n _ ~  ( 4 2 )  
~n 1 - 2 E ( 0  n) penk=l 

1 if n is even 
E(O") = (43) 

( 2 2 -  1 ) if n is odd 

When Pc < l/x/-2, ~n is finite for all finite n, whereas when P c -  PG = 
l/x/2, ~2 is infinite because the denominator in (42) is zero. To obtain a 
finite width at the multicritical point and along the spin-glass phase 
boundary, the mean ~1 must be zero, which leads to the Gaussian spin- 
glass scaling solutions. 

As we show below, when Pc < l /x/2 the set of moments (42) describe 
a probability distribution, which we call j ~ ' ,  which is unique up to the 
scale of the mean e,.  Our proof is accomplished using the Hamburger 
moment theorems (see, e.g., Reed and Simon(24)), which specify conditions 
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on the growth of the moments which must be satisfied in order for the 
moments to uniquely describe a probability distribution. In the following 
proposition we verify that these conditions are satisfied. 

Proposition 6. Let 1 / 2 < p c < l / x / 2  and 2pc (22 -1 )=1 .  Define 
{c~,} to be the set of moments given in Eq. (42). Then {c~,} are the 
moments of a probability density j ~ l  satisfying (40), which, for a specified 
finite mean ~ ,  is unique. 

Proof. We begin with the existence proof, followed by the uniqueness 
proof. According to the (existence) Hamburger moment theorem, a set of 
moments {c~i} are the moments of a probability distribution if and only if 
VN, the ( N +  1)x (N + 1) matrix A N ,  with elements (Au)ij = ~i_ l+ j -1 ,  is 
nonnegative definite. Let us verify this for the moments given by (42). To 
this end, let us approximate the {~i} by the moments { ~ }  obtained after 
m iterations of some probability distribution. Explicitly, starting with any 
initial distribution with mean ~i, iteration of the linear recursion relation 
(40) m times results in a probability distribution at the mth level, with 
moments {c~7}. Below, we will show that these moments converge 
(exponentially fast in m) to the {~}. However, because the distribution 
after any finite number of iterations is still a probability distribution, the 

m (A m` " is non- ( N +  I ) •  I) matrix A~v, with elements ~ N)~j=~_I+S_I ,  
negative definite. For any fixed N, this, together with the (exponential) 
convergence, implies that A N must also be positive definite, as desired. 

It remains to show that the {~m} converge exponentially fast to the 
m __  m ~]tm ,.) 2 1 / t i n - - 1  {~,}. Indeed, defining ~n -c~,+1 ~ ,+t ,  it is found that r2 =zPcv2 �9 

Using this and formula (42) for ~,, +, (as well as the corresponding formula 
for Otto+Z), it is easy to verify inductively that, for each n, there is an H(n) 
such that, for large m, 

tp'~ <<. H(n)[2p 2 ] '~ +2 - ,  (44) 

which completes the existence proof. 
Next, we show that once the mean is specified, this distribution is 

unique. According to the (uniqueness) Hamburger moment theorem, a 
probability distribution with moments {c~e} is unique if and only if there 
are finite constants C and D such that, gn, tc~,,[ ~< CD~n!. Here we will 
establish the stronger result that the moments {c~i} of J ~ ( x )  satisfy 

I~,] ~< Cn"/ae '~n (45) 

where C and ~--~(~1) are finite constants and a is a number satisfying 

a < ao --- -log(2)/log(p~) (46) 
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We will need this stronger result for our proof of completeness in 
Appendix D. 

We will establish (45) by induction on n. We first note that for n > 2, 

k = l  

(47) 

where D is a finite constant. Next, in Eq. (47) we substitute the upper 
bound on lekl and [~,_kl given by the inductive hypothesis. We bound the 
product Ic~kl I~,-k[ by the largest term in the sum, which occurs for 
k = n/2. Explicitly using the trivial relation Y', (~)= 2", we see that Eq. (47) 
becomes 

[anl <~ DCZe'~n[ (�89 l/a 2pc]" n'/a (48) 

Noting that a <  ao, we find that (48) is sufficient to verify (45), and thus 
completes the proof. | 

The following corollary is an immediate consequence of the unique- 
ness proof. 

Corollary. The density ~ ; l (x )  defined in Proposition 6 is entire. 

Proof. Equation (45) implies that the Fourier transform J~)~(k) 
satisfies 

I]~'(k)l < C1 e x p ( - C 2  Ikl") (49) 

for some constants C 1 < O0 and C2 > 0, and a satisfying (46). Thus, Jg l (k)  
and J ~ ( x )  are entire. | 

It is important to note that, although (40) is a linear relation for the 
random variables, it corresponds to a convolution for the densities 

po(x) = 2  Po(Y) Po - -Y  d Y + ( 1 - 2 )  Po(Y) Po - - - - Y  - -  
Pc ~ Pc Pc 

(50) 

This leads to the following equation for the Fourier transform: 

jfo(k ) - f e'k~po(x ) dx = )~f)2(p~k) + (1 - ,I.) t i~(-p~k) (51) 

We use Eq. (51) to obtain the numerical results illustrated in Fig. 10. 
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5.2. Existence of  a F e r r o m a g n e t i c  So lu t ion  

The ferromagnetic transition is like a pitchfork bifurcation, illustrated 
schematically in Fig. 11. When A ~< 0 the unique globally attracting fixed 
point of the recursion relation is the paramagnetic solution p(X)-= 6(X). 
At A =0 ,  the paramagnetic solution becomes unstable, and two new 
ferromagnetic solutions emerge. The two ferromagnetic solutions are 
related by a change in sign of the magnetization: the one the system 
ultimately chooses depends on the boundary conditions. 

Like the spin-glass transition, the ferromagnetic transition is a regular 
critical point, with only one degree of freedom. This degree of freedom is 
related to the indeterminacy in the mean of the scaling density J ~ ( X * ) ,  
and gives rise to a zero mode. In Section 5.2.1 we begin by considering the 
effects of small perturbations to the scaling fixed-point density J~ '  when 
A = 0. From this we obtain a linear operator for which we compute the 
eigenfunctions and eigenvalues. These eigenfunctions are defined in terms of 
the scaling fixed-point density J~ ' ,  and pose interesting mathematical 
problems which are discussed in Appendix D. In Section 5.2.2 we prove the 
existence of the ferromagnetic fixed points. 

5.2.1. The  F e r r o m a g n e t i c  E igenfunct ions .  R e c a l l  t h a t  i n  

Section 4.3 we introduced an operator ~ ( p ~ )  [Eq. (30)], with zeros p~ 
of ~ ( p ~ )  being fixed points of the recursion relation. The first step in 
applying the center manifold theorem is to linearize the operator ~o(P) 
[Eq. (30)] about the scaling fixed point, which is J~ '  for the ferromagnet. 

In this section we obtain the eigenfunctions and eigenvalues of the 
linear operator. The eigenfunctions are expressed in terms of J~ ' (X*),  and 
in Appendix D we show that they form a complete set in, e.g., 

. . - '  . . . . . . . . . . . . . . . . .  ".. "t- 

? p+ 
d "m 

- o 

.......... r e s c a l i n g -  - any mean  : 
p ..... ..' 

(a) (b) 
Fig. 11. (a) The ferromagnetic transition is like a pitchfork bifurcation. At the transition two 
new solutions emerge which are related by a change in sign of the magnetization. (b) After 
rescaling, we obtain a continuum of solutions along the phase boundary. Two of these 
bifurcate, giving rise to nontrivial ferromagnetic densities. 
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L2(coshxdx) .  Here we use L2(cosh x dx) for our bifurcation analysis, 
because convergence in this space [-which is stronger than convergence in 
L2(dx)] will allow us to make uniform convergence statements about the 
Fourier transforms of sequences of functions. 

When the operator N0(p) is linearized about the scaling fixed point 
J ~ ,  we obtain the linear operator given in Eq. (32), with Po(Y) replaced by 
J~ '(y) .  For the ferromagnet we will work with the Fourier transform of 
(32), 

s o J~(k) = 22r0(pk)f(pk)  + 2(1 - 2) t o ( - p k )  f ( - p k ) - f ( k )  (52) 

where rio(k)= J~(k) .  To study the properties of this operator, we must 
first look for eigenfunctions 

s  (53) 

with vn the associated eigenvalues. 
First we obtain two sets of generalized eigenfunctions; from these we 

then select a complete set in L2(cosh x dx). If we compare Eq. (52) with the 
scaling form of the recursion relation in k space (51), we note that when we 
multiply the fixed-point density by Iknl it satisfies the eigenvalue equation, 
with eigenvalue v, = 2p n - 1. Therefore, 

~], = Ik"l to(k)  ( 5 4 )  

are generalized eigenfunctions. Differentiating the scaling form of the recur- 
sion relation (51) once with respect to k, we obtain 

to(k)  = 2p2ro(pk) r'o(pk) - 2p(1 - 2) Po(-pk)  Y o ( - p k )  (55) 

Comparing this with the eigenfunction equation, we deduce that 

~ ,  = sign(k)Iknl r'o(k) (56) 

are also generalized eigenfunctions, with eigenvalue vn = 2p~(22- 1 ) - 1  = 

p, 1 1. When we inverse Fourier transform these functions to obtain 
their x-space counterparts, we find that, except for the even-integer d , (x)  
and the odd-integer ~,,(x), the functions behave poorly at infinity. This 
means that, with an appropriate definition of the relevant measure (e.g., 
cosh x dx), these functions are not summable. However, the remaining 
functions [-the even-integer dn(x ) functions and the odd-integer ~ , (x)  func- 
tions] form a complete set in L2(cosh x dx); the proof of this is given in 
Appendix D. Thus, our k-space eigenfunctions are 

m fkn~,(k), n even 
J n  (k) = ~ "(knfio(k), n odd 

(57) 
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where #$o(k)=J~'(k). This gives the following (complete) set of x-space 
eigenfunctions: 

~d "J~ (x ) / d x  n, n even (58) 
J;7(x)  = [d~(x j~(x ) ) /dxn ,  n odd 

with associated eigenvalues (independent of m) 

1"2p n - 1, n even (59) 
v, = ] 2p"(22 - 1 ) - 1, n odd 

The point spectrum is plotted as a function of 2 in Fig. 9. Note that the 
eigenvalues have the same functional form as the corresponding eigen- 
values along the spin-glass phase boundary. However, since Pc is a function 
of 2 along the ferromagnetic phase boundary, the curves look quite 
different. 

With the exceptions of o.r and J T  with eigenvalues 1 and 0, respec- 
tively, the eigenfunctions have negative eigenvalues. The first eigenfunction 
J~ '  corresponds to the trivial "growth mode," analogous to the Gaussian 
solution N~ in the spin-glass case. Here we focus on the marginal eigen- 
function J~ ' ,  which prevents the linear operator from being invertible. In 
accord with physical intuition, in this case the zero mode is associated with 
the mean of the distribution (whereas in the spin-glass case the zero mode 
is associated with the width), i.e., J~/C(x)= cJ~(xc) ,  with 

d 
J T ( x )  = -~c J'~lc(x)lc = l  (60) 

Note that the low-momentum behavior is the same for the 
ferromagnetic eigenfunctions as it is for the spin-glass eigenfunctions, 
j'm(k)~ffn(k)"~ ~ k  ". However, unlike the Gaussian case, we have been 
unable to write the ferromagnetic eigenfunctions in terms of a single 
generating function as in Eq. (34), nor can we show that they are 
orthogonal with respect to some weight function. 

The relative complexity of the ferromagnetic eigenfunctions is also 
apparent when we consider how the eigenfunctions combine under action 
of the bilinear operator (37), which will be important in the bifurcation 
analysis. Working with the transform of (37), 

Bo[f, ~] = 2j~(p<k) fi,(p<k) + (1 - 2 ) f ( - p r  fi,(-p<k) (61) 

we find that 
f pS  + t ~ rrl 

6if 's+ t '  S, l e v e n  
s + t - l  .~m odd, revert 

B o [ J ~ ,  J T ]  = (62) 
c i J i  , s, t odd 
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In spite of the fact that when both s and t are odd, the eigenfunctions j m  
and J~ '  do not combine in a simple way, we will be able to use the small-k 
behavior and the completeness of the eigenfunctions to conclude that the 
expansion of the resulting function in terms of the eigenfunctions begins 
with ~ m t _pS + t/m 2. i s +  with coefficient cs+t= 

5.2.2. Bifurcation of the Ferromagnetic Solution. N o w  we 

are ready to use what we know about the linear operator to establish the 
existence of a ferromagnetic solution inside the phase boundary. The 
relevant bifurcation (illustrated in Fig. 12) is slightly different from the 
corresponding bifurcation (Fig. 8) for the spin glass, since at the ferro- 
magnetic transition two solutions emerge instead of one. However (after 
rescaling) these solutions bifurcate from distinct points in function space, 
so that locally each of the two ferromagnetic bifurcations resembles the 
situation in Fig. 8. Of course, the two ferromagnetic solutions are related 
by a change in the sign of the magnetization. 

In the remainder of this section we prove the following theorem, which 
verifies the existence of a nontrivial fixed point p ( X )  in the ferromagnetic 
phase. 

T h e o r e m  7. Let A = p - p c ( 2 )  and let ~a(pa) be defined as in (30), 
so that zeros of ~a  are fixed points of the recursion relation. For A 

Fig. 12. 

scaling P~z~~ 
...... .~ so lut ions \ i 

," ~#~X, 

At the ferromagnetic transition we apply the center manifold theorem to show how 
new solutions bifurcate from two of the scaling solutions. 
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sufficiently small, there are two distinct one-parameter families of densities 
p~ which satisfy the equation 

The functions p )  and P2 are simply related by a change in sign of their 
antisymmetric part. Their limiting behavior is given by 

lira p~ = r 
A ~ 0  

where e l m  is as given in Proposition 6 and m * =  _+[(1- 2p2)/l~2p3] 1/2. 

To analyze the bifurcation of the ferromagnetic solution, we work in 
the Banach space L2(cosh x dx) (for which {jm} form a complete set, as 
proved in Appendix D). By the calculations of the previous section, it is 
clear that the kernel and the cokernel of the linear operator 6~o/6p~ both 
have dimension one; both can be identified with the eigenfunction ~1 .  
Since these spaces are finite dimensional, we can apply the center manifold 
theorem (Section4.3.2), which guarantees that when e and A are suf- 
ficiently small, there are functions g'~ and hm(e, A) which satisfy e,A 

~(~r + e j ,  1 + g mj) = hm(e, A) j ?  (63) 

For each value of m, hm(e, A) is the amplitude of the g ~  component of 
the left-hand side of (63). The function g mj is selected to make all other 
components zero. 

For given values of m, e, and A, the argument of ~ in (63) is a fixed 
point of the recursion relation if hm(e, A)=O. For example, at A =0,  
hm(e, 0) = 0 for a large range of e, due to the fact that there is a continuum 
of scaling solutions, and that moving in the ~ 1  direction [i.e., when e ~ 0 
in Eq. (63)] is essentially moving from one scaling solution to another. We 
prove the existence of nontrivial fixed points for A 4:0 by showing that 
there exist distinct curves along which hm(e, A)= 0 emanating from two of 
the scaling solutions. Because they emerge from distinct points in the func- 
tion space, they can be treated separately. Two conditions are sufficient to 
verify the existence of these curves: (1) particular scaling functions must 
correspond to critical points for hm(~, A), i.e., the gradient of hm(~, A) must 
be zero at the scaling functions with the right mean m*; (2) these scaling 
functions must be saddle points. The second condition verifies that a dis- 
tinct curve emerges from each ~r The proof of Theorem 7 is preceded by 
two lemmas. In the first we explore properties of g m ,  and in the second we 
verify conditions 1 and 2 stated above. Together these prove the existence 
of a solution to the fixed-point equation. In the proof of the theorem, we 
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show that this solution is pointwise nonnegative and of norm one, and is 
therefore a probability density. 

The eigenfunctions { j m }  are complete for any m; consequently, any 
m can be chosen and Eq. (63) will still hold. Of course, g~m~ and hm(e, A) 
will depend on the chosen value of m. For simplicity, we choose m = m*, 
the value of the mean for one of the bifurcating solutions. For m = m*, the 
bifurcating scaling function corresponds to the origin in e, A space 
( e = A  =0) .  

From the center manifold theorem we know that the gm 
L 2 ( c o s h x d x ) \ J l  . However, in the first lemma we see that for our 
problem we can obtain somewhat stronger results. 

k e m m a  8. Let gm and hm(g,, A) be the functions described in the 
center manifold theorem, which satisfy Eq. (63). Then, at A = 0: 

1. gm has no component along J o  or f ~ ' .  ~,0 

i m 2. I g~,oll =O(e) .  
3. hm(e, 0 ) = 0 f o r a l l  ] e l < l .  

Proof. When A = 0 the operator ~ reduces to the linear convolution 
operator minus the identity operator [Eq. (50)]. By Proposition 6 (Sec- 
tion 5.1), we know that up to the mean, J ~ '  is a unique fixed point of the 
linearized recursion relation. Therefore, the argument of the operator in 
Eq. (63) at A = 0  must simply be an expansion of J f  with the different 
mean m t. Evidently, 

f ~ + e f T + g  m (64) 

where m t is determined by e. 
Fourier transforming Eq. (64) leads to an identical equation in 

k space. Solving this equation for ~m 0, we obtain 

~m + ~;,n 
g~mo = J o  -- JO -- e l 7  (65) 

Using the small-k behavior of the eigenfunctions (Lemma D.5), we find 
that to zeroth order in k, the right-hand side vanishes, indicating that o~m0 
has no component  along Am J 0 '  By the center manifold theorem we know 
that g~,0 has no component  along ~" Am J l "  This proves condition 1, and as a 
result we find that 

m + = (1 + e) m (66) 

Next we let j o ' =  j '~(x/w(e))  for some function w(e). (Recall that 
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scaling solutions of different means are simply related to one another.) 
Equation (66) implies that 

f J'g(x/w(e)) x dx = (1 + e) m (67) 

However, we can make the change of variables u = x/w(e), so that Eq. (67) 
becomes 

w2(z) m =  (1 + s ) m  (68) 

because the first moment of J'~(x) is m. Thus, we have w(e)= (1 +e)l/Z. 
This, together with the small-k behavior of the functions { jm},  indicates 
that g~.o = O(e). Finally, condition 3 follows from the fact that the Taylor 
expansion of (1 + e)~/2 converges for l el < 1. I 

Next we show that the fixed-point equation has a nontrivial solution 
for positive values of A. 

Lemma 9. Let hm(e, zt) be the function described in the center 
manifold theorem and Lemma 8. Then the origin is a critical point if the 
mean is given by 

/1 - 2 p 2 \  u2 
m =  + m * =  + | ~ 1  (69) 

- - \ 2 p ~ u ~ /  

Furthermore, for these values of the mean, the origin is a saddle point. 

Remark. The bifurcating solutions are illustrated schematically in 
Fig. 12. The fact that the magnetization has the form (69) implies that the 
critical exponent of the transition is f l= 1/2, consistent with other mean 
field theories of ferromagnetic transitions. 

Proof. Sufficient conditions for the origin to be a critical point are: 

63h m 
1 . - - 7 - ( 0 , 0 ) = 0 .  

o~ 

~ h  m 
2 . - ~ -  (0, 0) = 0. 

Condition 1 follows from the previous lemma. In order to prove condi- 
tion 2, we have to do a little work. Note that condition 1 is satisfied at 
points other than (0, 0), while condition 2 is satisfied only at a single point, 
which, by our choice m = m*, turns out to be the origin. 

Expanding both sides of (63) and matching terms of order a indicates 
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that (8hm,/OA)(O,O) can be identified with the J'j" component of 
(d/dA)[N~(J'~)]~= o. Using (29) and (30), this is given by the sum of two 
terms, 

d 
[ ~ ( J ~ " ) ]  ~ =0 = Ii + I2 (70) 

where 

I i = 2 f J o ( y ) J o  - y  [2r 

- - 21 t , xy -  1 y2] _ 
- - - l ~ c p , .  

P,, P~ 

- y  - y -  - y  ( 1 - # Tx y )  dy 
P,~ 

+ (l - 2) f jo(y) ~r ( -  

(71) 

x y 

In the above equation the prime denotes a derivative with respect to the 
argument, and, to simplify notation, we have dropped the superscript m on 
the scaling fixed point ~r We see that the integrals are convolutions; 
hence, the Fourier transforms are easy to calculate: 

-2 /~;Bo[Jo ,  j~;]  2B - ~ 1 - = oEJo, - - -  Bol-Jo, ) o ]  
Pc" 

/2 = 1  BoEJ; ,  (kA?o)] + l  BoE)?o ' (kA?o),] (72) 
Pc P~. 

+ #~BoE2;, (kJo)"] +/~2BoEPo, (ko.r '] 

where B o is the k-space bilinear operator given in Eq. (61), and the primes 
denote derivatives with respect to k. 

Now, using the small-k behavior (Lemma D.5), we can calculate the 
~.r component of these integrals, which is associated with the coefficient of 
k in the Taylor expansion of the integrals about the origin. We find that, 
to leading order in k, 

Ii + I2= imk ( ~ - -  #~q) + O(k2) (73) 
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where q is the second moment of J ~ .  The leading behavior of J~T is given 
by imk + O(k2). Therefore 

Ii + I 2 = ( 1 - # : q )  j T  + O(jS'~) (74) 

which implies that 

~hm (O' O)=( 1 -  #:q (75) 

Consequently, the origin is a critical point if and only if the second moment 
has the special value 

1 
q* = (76) 2 

#cPc 

It is interesting to note that the second moment is given by the same 
function of Pc as is found for the symmetric spin glass. 

Our moment equations (42) for the scaling form of the distribution 
indicate that 

2p~m 2 
q = 1 - 2p~ (77) 

Therefore, when q has the value specified in (76), the first moment has the 
form given in (69). Note also that the sign of m* is arbitrary. 

It remains to be shown that when m = ___m*, the origin is actually a 
saddle point. To do this we show that the Hessian 

H= h ~m h~jm~ - h~ h'j~ 

is negative. By Lemma 1.8, hem(0, 0 )=  ~2/~,2[hm(8, O ) ] e =  0 = 0. Therefore, it 
suffices to show 

02hm(e, A) 
h~(O,O)-  ~ a -  ~=o.a=o r  (78) 

when rn = +m*. 
Note that h,"~(0, 0) is the component of 

~a ( J~ '  + eeT  + gin)  (79) 
AI = O , e = O  

along or T. In order to compute this operator, we first take the functional 
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derivative of N~ evaluated at J ~ ,  and then differentiate with respect to A, 
and finally evaluate the result at A = 0. The result is 

aA f~ '  + ~r + g~,~ 

= 2[X~(J~', i T )  + K2(J0 n, J T ) ]  

- 2Co[J~' ,  j ~ ' ]  (80) 

where K1 and K 2 are the bilinear operators I1 and I 2 used in our previous 
calculation (71), with J ~ ( y )  replaced by iT(Y) ,  and Co is defined here for 
future reference. Upon Fourier transforming these integrals, we obtain 

/~1 2 ~ / __2/Ac Bo  i-of  1, ) • - ]  2 ~,t = -- #cBoEJl, 3o] -- 1 Bo[)l, ) o ]  
Pc 

/?2 = 1 BoE), ' ( k ~ ) ]  + 1 Bo[r (kr (81) 
Pc P~ 
-[- ~2Bo[-r (k)o)"  ] + ~2Bo[-); l  t, (kr ] 

where again B0 is the k-space bilinear operator given in Eq. (61), and we 
have dropped the superscript m on the eigenfunctions to simplify notation. 

As before, we use the small-k behavior to find the ~r component of 
these integrals. We find that, near the origin, 

= - ~ q / ~  + O ( k  2) (82) 

so the J~ '  component is given by 

3 2 
K1AI - R2 = (2-~-- ~ q/Q) o ~  + O(or ) (83) 

Thus, when q = 1/Pcl ~2 we find that 

h~(0, 0 )=  - -  

From this we may conclude that the 
m = _m*. | 

2 
r 0 (84) 

Pc 

origin is a saddle point when 

The existence of fixed-point solutions follows from Lemmas 8 and 9. 

Corollary. For A sufficiently small, there a two distinct one- 
parameter families of functions f ~  (x) E Ll(dx) which satisfy the fixed-point 
equation R ~ ( f  ~ ) = O. 
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Proof of Theorem 7. Given the above corollary, all that remains to 
be shown is that the f f f  are pointwise nonnegative and of L ~ unit norm. 
To this end, we follow the strategy of ref. 2 and introduce the auxiliary 
nonlinear operator ~ given by 

~ ( f )  = ~ ( t f l )  (85) 

for f eLl(dx). 
First we claim that for A sufficiently small, there are two distinct one- 

parameter families of densities )7+ e L~(dx) satisfying the equation 

~A(j~+) = 0  (86) 

As in the proof of Proposition 4.6 of ref. 2, this follows by verifying that the 
linear operators of the new fixed-point problem are identical to their 
analogues computed previously. It turns out that this is a simple conse- 
quence of the nonnegativity of J ~ .  

Clearly the new fixed-point solutions are pointwise nonnegative: 
)7+ ~> 0. Next we show that the jT+ are of unit norm. For this we define the 
analogue of the bilinear operator B~ of Eq. (26): 

B~ El,, g]  = B~Elfl, Igl] 

Here, rather than the integral-preserving property, we have 

(87) 

s B~[-f, g]  = [If ill ]lgila (88) 

for f, g ~ Ll(dx). However, the fixed-point equation (86) is equivalent to 

B~ [Tff, 7 +  ] = 7 ~  (89) 

Equations (88) and (89)imply H)7 f 111 = ]1)7~ I112, so that H)7 ff 111 = 1. Finally, 
we claim that solutions f f  of the original problem are equal to those of the 
auxiliary problem, Indeed, by nonnegativity, 

so that, by (89), 

(90) 

Ba [)7+,)7 + ] = 7 2  (91) 

This, however, is equivalent to the original fixed-point equation. Thus, by 
uniqueness of solutions,)7+ = f + ,  as claimed. | 

Thus, we have shown that out of the continuum of solutions J ~  of 
arbitrary mean which satisfy the recursion relation in the scaling limit, 

822/61/5-6-5 
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there are exactly two solutions, corresponding to means _+m*, that can 
bifurcate into new solutions for nonzero A. The fact that the origin is a 
saddle point in each case shows that indeed these functions do bifurcate. 

6. M U L T I C R I T I C A L  P O I N T  

The multicritical point (Pc, J~N) is the point on the phase diagram 
(Fig. 1) where the paramagnetic phase boundaries for the ferromagnet and 
the spin glass meet. From the point of view of critical phenomena, multi- 
critical points often exhibit particularly striking behavior. Intermediate 
phases and crossover effects in the scaling behavior can be observed. Multi- 
critical points also have rich behavior from the point of view of dynamical 
systems. At a regular critical point (like the spin-glass or ferromagnetic 
transitions previously analyzed) there is only one degree of freedom, 
leading to a codimension-one bifurcation. At a multicritical point, there 
will be two or more degrees of freedom, leading to a higher-order bifurca- 
tion. 

It is interesting to note that the Nishimori line, (25)'1~ = 2)~- 1, inter- 
sects the phase diagram at the multicritical point, and that where the 
Nishimori line is in the paramagnetic phase, no magnetized phase exists 
below it (i.e., for 2 < 2N). In finite dimensions, Nishimori showed that this 
should be the case, and certain exact results are known along this line. 
Recently, using an exact renormalization group approach, Le Doussal 
and Georges obtained the corresponding results for certain hierarchical 
lattices. (26) Using local gauge invariance, Le Doussal and Harris showed 
that the multicritical point should lie on the Nishimori line. (27) 

This section is organized as follows. In Section 6.1 we perform a simple 
moment analysis to determine when the symmetric spin-glass solution is 
linearly unstable to perturbations in the mean. This instability coincides 
with the phase boundary separating the spin-glass from the magnetized 
spin-glass phase in Fig. 1. In Section 6.2 we perform a bifurcation analysis 
at the multicritical point. Here the recursion relation exhibits a twofold 
instability yielding a codimension-two bifurcation. This analysis shows 
that a pair of magnetized solutions emerge at the spin glass-MSG phase 
boundary. Because the phase boundary bends away from a vertical line 
toward 2 =  1, the spin-glass phase is reentrant, as observed in many 
experimental spin glasses. On the other hand, we find that in the neighbor- 

10 Recall that the Nishimori line, defined by P(- Jv)/P(Jij)= exp(- 2[~Jo), where P(Jv) is the 
probability distribution over the random bonds, is a special line in the phase diagram along 
which certain exact results, e.g., an expression for the quenched internal energy, can be 
obtained. 
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hood of the multicritical point there is no sharp change in p(X) at the 
ferromagnet to magnetized spin-glass transition. Consequently, in the linear 
stability and bifurcation analyses we will speak of a magnetized solution, 
since we cannot distinguish between the ferromagnet and magnetized spin 
glass. 

6.1. The M S G - S G  Phase Boundary  

In Section 3, we determined the lines along which the paramagnetic 
solution p(x)= 6(x) becomes unstable to perturbations in the width and 
mean, corresponding to the (potential) onset of spin-glass and ferro- 
magnetic order. (The proof of existence of these phases required the full 
bifurcation analyses of Sections 4 and 5.) In this section, we do a moment 
analysis to determine the line along which the symmetric spin-glass solu- 
tion becomes unstable to perturbations in the mean. While this argument 
does not prove the existence of a stable asymmetric distribution, it is 
simple, and it yields the phase boundary separating the spin-glass from the 
magnetized spin-glass phase. 

Proposi t ion  10. Let A = p - - p G > O  and ~(A)=A-I(;t-)~N) - 
~O+~lA. Then, for asymptotically small A, the symmetric spin-glass 
solution is linearly stable with respect to perturbations in the mean when 
((A) < PG A. 

Remark. The limiting case of equality 

t 2 - -  '~Nt 1/2 - -  n l / 2  - r c  [ P -  Pc[ (92)  

determines the asymptotic form of the phase boundary between the spin 
glass and magnetized spin glass, illustrated in Fig. 1. Note that because the 
coefficient of ] p - P c [  in (92) is positive, the spin-glass phase boundary is 
reentrant. 

Proof. The method of proof is similar to moment analysis; however, 
here we calculate the leading behavior of the moments of our solution. 
Because we calculate the moments of this particular solution, rather than 
obtaining general bounds, we avoid large overestimates of the higher-order 
terms in moment expansions. Explicitly, we use the following two facts 
from our bifurcation analysis. First, because our spin-glass solution is 
symmetric, we can ignore all odd moments. Second, we use the fact that 
tn-= E(y4) = O(q]), which allows us to neglect certain terms. 

In Section 4.3 our results from the bifurcation analysis indicate that to 
leading order in A, 

A 
q = p c t ~  (93) 
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This can also be seen directly from the following moment calculation. 
Squaring the recursion relation (12), which is the (unrescaled) recursion 
relation used in the bifurcation theory, we obtain 

~2 P 2 ( Y 2 + Z 2 + 2 Y Z ) = F z ( Y , Z ; O )  (94) 
(1 + p2yz)2  

Expanding the denominator yields 

X 2 = p2( y2 q_ Z 2 q_ 2 YZ)(1 - 2# 2 Y Z  + 3# 4 Y Z z  2 _ 4[26 y3 Z 3) 

+ (5#8 YaZ 4 + 6 / , l~  5) FZ(Y, Z; O) (95) 

Taking the expectation gives us 

q.+l  = 2p2q. + 2P 2m2 - 4p2122q 2 - 4p2#2m.r.  + 6p2124q.t. + 6pZ#4r~ 

- 8p2126rnSn -- 8p2126t2n q- E[(5# 8 y4Z4 --}- 6121~ 5) F2( Y, Z; 0)] 

(96) 

where r . = E ( Y 3 ) ,  t . = E ( y 4 ) ,  s . = E ( Y S ) ,  and the last term is O(q.t2).  To 
obtain q for our spin-glass solution, we solve this equation self-consistently 
(set q . + l = q n = q ) ,  and set all odd moments equal to zero. Near the 
transition the leading-order terms are given by 

q = 2p2q - 4p2#Zq 2 + O(qt) (97) 

where similar expansions of X 4 give t =  3q2+ O(A4), so that q t=  O(q3). 
Therefore, to leading order, q is given by Eq. (93). To obtain q to order a 2, 
we simply retain terms of order A 3, 

q = 2pZq - -  4p2122q 2 + 6pzla4qt  + O(t 2) (98) 

From this, and the leading behavior of t cited above, we obtain q to 
quadratic order, 

A J z ( 6 # Z p a  - 2) 
q = p--~G + # 4 p a  + O(A 3) (99) 

Using this information, we will now look for an instability with respect 
to perturbations in the mean. To do this, we assume that the distribution 
has some infinitesimal mean mn on the nth level. Instability is associated 
with growth of the mean m upon iteration. We begin by expanding the 
recursion relation 

X = pO( Y-~- Z)(  1 - [22 Y Z  -~ [24 y2 Z 2 _ [26 y3 Z 3 ) _[_ [28 y4Z4F(  y, Z; O) (lO0) 
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and taking the expectation 

mn + 1 = 2p(22 - 1 )[m, - #2mnq n + N4qnr,7 - -  ,U6?'n t ,] +//4E( Y2Z2F( Y, Z; 0)) 
(101) 

where the last term is O(m~q]). A similar expansion shows that 
r,, = 3m,q ,  + O(m~q2). 

Our spin-glass solution is unstable if the coefficient of m, is greater 
than unity. We claim that marginal stability occurs when ( =  O(A). To see 
this, let us substitute into (101) the values of the even moments obtained 
above for our solution. Using the leading behavior of r~ and keeping terms 
of order A 2 in the coefficient of m,, we obtain 

m n + l = 2 p ( 2 2 - - 1 ) [ 1 - # 2 q + 3 # 4 q 2 ] m ~ + O ( A 3 m ~ )  (102) 

Substituting the expansion (99) for q yields 

m,, + ~ = [1 + 4pa(A - 2A 2] m,, + O(A3mn) (103) 

We observe that the coefficient is less than unity when to leading order 
< pGA, indicating that in this case small perturbations in the mean are 

suppressed. On the other hand, when ( >  p e a  to leading order, the coef- 
ficient of m, is greater than unity, implying instability. The limiting case of 
equality determines the asymptotic form of the phase boundary. | 

6.2. Mu l t i c r i t i ca l  Point: A B i furca t ion  Analysis 

In this section we use bifurcation theory to determine the densities of 
single-site magnetization p(X) which satisfy the full nonlinear recursion 
relation (4) in the neighborhood of the multicritical point, p = Pa, 2 = 2N. 
At this point there is a twofold instability [associated with the width and 
mean of p(X)], which reflects the fact that both the symmetric spin-glass 
and magnetized phases can be reached. Here we speak generally of the 
magnetized phases because the bifurcation analysis does not distinguish 
between the magnetized spin glass and ferromagnet: in the neighborhood of 
the multicritical point there is no sharp change in p(X)  at the transition. 
The asymptotic form of the phase boundary between the spin glass and 
magnetized spin glass (Fig. 1) discussed in the previous section coincides 
with the emergence of magnetized solutions. 

Both the spin-glass and magnetized phases exist in an arbitrarily small 
neighborhood of the multicritical point, so that the nature of the existing 
solutions will depend on the direction in which one moves at the transition. 
Entering the spin-glass phase, the only solution which bifurcates from 
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the unstable paramagnetic solution is the symmetric spin-glass solution 
which was encountered previously in Section 4.3. The spin-glass solution 
continues to exist whenever 2p2> 1; however, in the magnetized phases 
two additional solutions emerge, corresponding to the + m  magnetized 
ferromagnetic or MSG states. Consequently, for certain ranges of p and 2, 
three solutions will bifurcate. This situation is illustrated in Fig. 13a. 

For  the spin-glass and ferromagnetic transitions, the bifurcation 
analysis began with a look at the scaling solutions along the phase bound- 
ary (Sections 4.2 and 5.1). As in those cases, we define d = p-p~>O. We 

rescale the random variables X ~ X* = X/v/d, and at d = 0 we retrieve the 
linear scaling form of the recursion relation (40). At the multicritical point 
our results from the analysis of the spin-glass transition continue to hold. 
The scaling solution is again a Gaussian ~ ( X * )  of some arbitrary finite 
width. It is interesting to note that at the multicritical point asymmetric 
magnetized solutions bifurcate from a symmetric scaling solution. This 
occurs because, in terms of the original variables, asymptotically m 
approaches zero faster than ~ near the multicritical point, In our 
analysis we find that both of the magnetized solutions bifurcate from the 
same Gaussian (these solutions differ only in the sign of the odd moments;  
the even moments are the same), while generally [i.e., when ( ( 0 ) >  0] the 
symmetric spin-glass solution bifurcates from a Gaussian with a different 
width. (See Fig. 13b.) 

We apply the center manifold theorem (see Section 4.3 to show how 
new solutions bifurcate from some of the scaling solutions. At the multi- 

-/O(x) = 8(x) ~ i  
A=o A ----- 

rescalin~ 

..,,'" 

g2 M 

'..., 

IDA:$ G 

. . , '  
..." 

A=( ....................... 

(a) (b) 

Fig. 13. (a) At the multicritical point, for certain ranges of d and (, three new solutions 
emerge from the unstable paramagnetic density; one is the unstable spin-glass solution, and 
the other two are stable magnetized solutions, related by a change in sign of the magnetiza- 
tion. (b) The two magnetized solutions bifurcate from the same Gaussian scaling solution, 
while typically the symmetric spin-glass solution bifurcates from a Gaussian of a different 
width. However, the three solutions merge at the phase boundary between the spin-glass and 
magnetized phases. 
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critical point the eigenfunctions of the linear operator [Eq. (32)] are the 
Hermite functions multiplied by Gaussians, N~(x)= Hn(x/cr)~(x), where 
o .2 is the variance of the Gaussian if; ,  as was the case along the spin-glass 
critical line. The associated eigenvalues are given in Eq. (35), and the point 
spectrum is illustrated in Fig. 9. Along the spin-glass phase boundary, the 
even eigenvalues, which depend only on p, remain fixed. The bifurcation 
analysis reveals that the evn eigenfunctions (which are symmetric in x) are 
the only relevant ones in the spin-glass phase, since the spin-glass density 
is symmetric. On the other hand, the eigenvalues of the odd (antisym- 
metric) eigenfunctions do vary as we move along the spin-glass phase 
boundary. When the bond distribution is symmetric (2 = 1/2), all of the 
odd eigenfunctions have eigenvalue -1 ,  whereas at the multicritical point, 
each odd eigenvalue v2n_ 1 becomes degenerate with an even eigenvalue v2n. 
In particular, at the multicritical point (and only at this point) there are 
two zero modes ~ and ~ .  It is here that the odd eigenfunctions play an 
important role: there are two unstable manifolds in the function space, 
giving rise to a codimension-two bifurcation. 

Theorem 11. Define A = p - p c > O  and ~(A)=A I ( )~ - - , ,~N)  , and 
let N~ be as given in Eq. (30). Then for positive A sufficiently small, there 
exists at least one one-parameter family of densities p~ e L 2 satisfying 

~(p~)=0 

One particular family corresponds to a symmetric spin-glass solution, and 
has the property that 

lim P4 = ~ G  
A ~ 0  

where ~ is a normalized Gaussian of width if: 

. ~ ;  = (7~0.2) 1 e x p ( - - x Z / f f  2) 

and (crG)2=2/[pa(2p~-l)]. Furthermore, this solution is unique if 
lim~ 40 ((A)/A < Pc. However, if lim~_~o ((A)/A > Pc, exactly two addi- 
tional asymmetric families of solutions exist. These solutions are related by 
a change in sign of the odd moments and have the property that 

lim p~ = ff~M 
A ~ 0  

where (~rM) 2 = 212~(0) + 1]/[pc(2pa - 1)]. 
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Remark. Because the eigenfunctions are the same as the spin-glass 
eigenfunctions, a proof of the bifurcation of the spin-glass solution at any 
point along the phase boundary is contained in the proof we give below. 

We work in the Banach space L2(cosh x dx), which is spanned by the 
eigenfunctions { ~ }  (see Appendix D). As stated previously, at the multi- 
critical point both fr and fr have eigenvalue zero. Together they comprise 
the kernel and the cokernel of the linear operator (ONo/gp). By the center 
manifold theorem we are guaranteed the existence of the functions g, h~, h 2 
which satisfy 

~,(~J; + ~ , ~  + ~2~; + g(~,, ~2, ,~; ~)) 

= h,(el, e2, A; ~) ~ q- h2(gl, g2, A; ~) ~ (104) 

Fixed points of the recursion relation are zeros of R~. We begin by expand- 
ing both sides of Eq. (104) for small el, e2, and A. The nonlinearities in the 
functional expansion determine particular curves e~(A) and e2(A) for which 
the right-hand side vanishes. These are the coefficients of ~f~ and ~ ,  
respectively, in the expansion of the fixed point in terms of the eigenfunc- 
tions. For convenience, we choose a to be the width of the bifurcating 
Gaussian. When ~(0)>0, the symmetric spin-glass solution and the 
magnetized solutions bifurcate from different Gaussians, so we can treat 
the bifurcations separately. [In this case, if for some reason we chose to 
look at the bifurcation of the spin-glass solution using the width 
appropriate to the magnetized state, we would find that the spin-glass solu- 
tion bifurcated from a point other than the origin, with e~(0)= A = 0, but 
e2(0 ) r 0.'] When lim~ ;o ~(A)/A < pa, only the symmetric spin-glass solu- 
tion bifurcates. The most interesting case occurs in the intermediate regime, 
where ~(0)=0 and lim3;o ~(A)/A>~pc. In this case all three solutions 
bifurcate from the same Gaussian, but are distinguished by three different 
sets of curves e~(A) and e2(A). To all orders in perturbation theory, the 
symmetric spin-glass solution has e~(A)= 0, whereas the pair of magnetized 
solutions are related by e~(A)=-e~-(A). At the phase boundary, 
lim~;o ~(A)/A = PG, the curves for the three solutions coalesce. 

The proof is contained in two lemmas, analogous to the lemmas used 
at the ferromagnetic transition (Section 5.2.2). The main difference between 
our analysis at the multicritical point and our previous analysis is that at 
the ferromagnetic and spin-glass transitions we had a one-parameter family 
of scaling solutions, and one unstable manifold in the function space. 
Moving in the direction of the zero mode corresponded to moving from 
one scaling solution to another. [See Eqs. (36) and (60).] At the multi- 
critical point we again have a one-parameter family of scaling solutions, 
but now we have two unstable manifolds in function space. At the multi- 
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critical point one of the zero modes, N~, corresponds to moving from one 
scaling solution to another. The other one, N~, corresponds to an unstable 
direction which is orthogonal to N~ and N-g. 

In the first lemma we primarily examine properties of g(~,/32, A; ~), 
and in the second we explicitly determine the leading behavior of the 
functions hl(e~,/32, A; ~) and h2(e~, e2, A; ~) in the neighborhood of the 
transition. It follows from the center manifold theorem that 
g(/31, e2, A; if) e L2(cosh x dx)\{N~, g g}. In the first lemma we obtain some 
stronger results. 

L e m m a  12. Let g(el, ~2, A; ~) be the function defined in the center 
manifold theorem, such that g(e~, ~2, A; ~) satisfies Eq. (104). Then at 
A =0 :  

1. 

2. 

3. 

g(/31, e2, 0; ~) has no component along N~, N~, or N~. 

Ilg(el, e2, 0; ~)ll = O(e,/32) + O(z~). 

h1(~1, e2, 0; ~) 0 and h2(el, /32, 0; ~) 2 2 = = el p G for el and e2 suf- 
ficiently small. 

Proof. From the center manifold theorem, we know that g(/3~,/32, 0; 
~) has no component along N~ or N-g. We are also guaranteed that 

~O( N~ -1- el Nal Jr- e2 N~ "Jr g(/3~ , /32, O; ~) ) 

=hi(el , /32, 0; ~) N 1 -[- h2(~1, g2, 0; ~) N-g (105) 

The uniqueness clause of the center manifold theorem says that if we can 
find a g(e~, ~2, 0; ~) such that (105) is satisfied for any h~ and h2, then this 
must be the only such function g. As an ansatz, we can try the functions 
hi and h2 in statement 3 of the lemma: i.e., if we can find a g which satisfies 

,~o(N3 + glN~_t_ t;2N-g_t_ g(81'/32, 0; ~ ) )=  /31PG~ 2 2  2 ~  (106) 

then we will have verified statement 3. If, in addition, we can show that this 
g(el, e2, 0; ~) has no component along N~ and that it satisfies condition 2, 
then we will be done. To this end, let us explicitly compute the 
g(el,/32, 0; ~) satisfying Eq. (106). We see that g(el,/32, 0; ~) begins at N~, 
and the first few terms are given by 

(107) 

The center manifold theorem implies that g(/31,/32, 0; ~) ~ L2(cosh x dx), so 
that, by the results in Appendix D, g must have an eigenfunction expansion 
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which can be determined by the small-k behavior. Therefore, the expansion 
(107) must converge for e~ and e z sufficiently small. This verifies statements 
1-3 of the lemma. | 

Remark. Comparing Lemma 12 to our previous analysis of the bifur- 
cations of the ferromagnetic (Section 5.2.2) and spin-glass solutions, (2/ we 
see that in those cases the function h(e, A) vanished at A = 0. This implied 
that the argument of No in (105) was simply the scaing solution ~ ;  (or Ar 
for the ferromagnet) at a different value of the width (or mean)--see, e.g., 
Eq. (64). However, in general, hi(el, e2, 0; ~) need not vanish. Indeed, in 
the above lemma, we have hz(el, e2, 0; ~)50 for el r  indicating that the 
argument of No at e~ r 0 is not simply a Gaussian of a different width. In 
hindsight, this should come as no surprise, since ~ql is an odd function. 
Finally, note that when ~1 = 0, the problem reduces to the bifurcation of 
the symmetric spin-glass solution (Theorem 1.5 of Section 4.3.2). 

Now, using the information from the previous lemma, we expand the 
left-hand side of (104) for small el, e2, and A. The expansion for small A 
involves straightforward differentiation of the nonlinear operator (30). The 
expansion for small e~ and e2 involves functional derivatives of the operator 
evaluated along the zero modes. Because the bifurcation is higher order, to 
extract meaningful results we must expand ~ to higher order, resulting in 
intricate computations. After enormous labor, we extract the coefficients of 
~ and ~ in these expansions to explicitly determine h~(e,, ~2, A; ~) and 
h2(el, e2, A; ~). In addition, we determine particular curves el(A) and e2(A) 
along which hi and h 2 are zero, which proves the existence of the desired 
solutions. 

Lemma 13. Define A = p - p a > O  and ~(A)=A-I(J~N-)~). Let 
hi(el, e2, A; ~) and hz(gl, •2, A; ~) be the functions described in Lemma 12. 
We distinguish several cases: 

1. Suppose ~(0) > 0. If the variance is chosen according to 

a2 = 2[1 + 2~(0)] 
z (108) /~2pc ~crM 

then there is a nontrivial parametric curve (gl(S),g2(s), A(s)) passing 
through the origin along which the functions h~ and h 2 vanish 
simultaneously. On the other hand, if we choose 

2 
g 2 - -  ~ 0  " 2  (109) 

#~Pc 

then there is a nontrivial curve in the (g2, A)plane, emanating from the 
origin, along which h, and h 2 simultaneously vanish. 
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The two halves of the first curve corresponding to el(S)>0 and 
el(s) < 0 represent the positively and negatively magnetized solutions, while 
the second curve represents the (here, linearly unstable) symmetric 
spin-glass solution. If we choose a = a M ,  then the magnetized solutions 
emanate from the origin and the spin glass bifurcates from a different point, 
while if we choose a - - a a ,  then the spin glass emanates from the origin, 
and the magnetized solutions branch from a different point. 

2. Suppose ( (0 )=  0. Then there exist curves along which h 1 and h: 
simultaneously vanish only for a = aa. 

(a) If limA+ o ((A)/A > Pc, then both magnetized and symmetric spin- 
glass curves exist, and both emanate from the origin. 

(b) If limj+o((A)/A=pa, then the magnetized and symmetric 
spin-glass curves both emanate from the origin, and agree to leading order 
in A. 

(c) If lim ~ ~o ((A)/A < Pc, only the symmetric spin-glass curve exists, 
here corresponding to a linearly stable solution. 

Proof. As previously mentioned, hi and h2 can be identified with 
the coefficients of N~ and ~2, respectively, in the expansion of 
~A(~+~;lCff~-be2(~-[-g(gl, e2, A; ()) in the neighborhood of the origin 
(A = el = e2 = 0). Expanding the operator Na to quadratic order in A yields 

A 2 
�9 ~d = ,~o + A(~0 -{- T ~2~~ '}- O(m3) (110) 

where 8~o---(0~z/0d)z=o and 02,~O~(~2~)A/~Ai)A=O. Each term on the 
right-hand side of (110) can be thought of as an operator which acts on a 
pair of functions. At this stage in the expansion, these functions are both 
equal to the argument of ~ in (104). To obtain the expansion for small 
e~ and g2 we calculate the Frechet derivative O~a/~?p evaluated at the 
known solution. Furthermore, we need only keep track of terms which 
have nonzero components along ~ and ff~. In terms of the bilinear 
operator Bo[ f g] given in Eq. (37), we obtain 

�9 ~ A ( ~  + 8 l ~  + 8 2 ~  + g(gl ,  g2, Zl; ~)) 

= Bo[~r ~ 2  - ~r 
~ ~ 2 + 2el B o [ ~ ,  ~ - ]  - el ~dl + 2a2Bo[~o, cd~] -- %~ + g lBo[C~l, ~ l  

+ zlO~oEf~g, fig] + 2elAa~o[fCg, ff~] + 2e=Aa~oE~g, ~ ]  

+ �89162 ~ ]  + < a 2 a = & [ ~ ,  ~r + o ( ~ a  ~) + o (e la  ~) 

"-~- O(el A3 ) (111) 



1036 Carlson e t  al.  

From our results in the previous lemma, we deduce that the terms in this 
expansion which come from g(e l ,  e2, A; ( )  will not contribute to this order. 

Next we determine the ~f~ and N~ components of this expansion term 
by term. The first seven terms in the above expansion are written explicitly 
in terms of the bilinear operator B o and the identity. The only nonzero con- 

2 a tribution from this group of terms comes from the last term e I Bo[~l, ~ ] .  
From (38) it follows that the projection of this term onto the cokernel is 
given by 

2 ~ ~ (112) gl Bo[q~l,  q ~ ]  o {~?1, ~ }  = g12 PG~22/.oa 
The operators aNo and ~?2N o can also be expanded in terms of the 

bilinear operator Bo[f, g] and a related function. We begin with aNo. This 
operator is very similar to the operator Co[f, g] which we studied pre- 
viously in our analysis of the ferromagnet [Eq. (80)]. Now, however, 2 and 
p both depend on A, which gives rise to an additional term. For the 
ferromagnet (where only p depends on A), the operator Co is written in 
terms of B o operating on the eigenfunctions OC~ and OCt' and their 
derivatives in Eq. (81). To obtain the operator in this more general case, we 
include the additional term which arises because 2 = 2 ( A ) = 2 N + { ( A ) A ,  
and we replace J~ '  and oCT wi thfand  g, respectively, in Eq. (81). We write 
the resulting equation in terms of the Fourier transforms of the functions, 
where we recall that ((A)= ~o+(~A + O(d2), 

0No[f (k), ~(k)] = ~o[)~(pak) f i , ( p G k ) - - f ( - p a k )  g ( - - p G k ) ] -  1 Boil, g] 
Pa 

2 9 ^ g ' ]  - 2 / ~ B o [ f ' ,  g ' ] - p a  o[f, +---1 BoE(kf), g'] 
Pa 

1 
+ - -  BoE(k f ) ' ,  ~,] 2 " , 2 ,, + l~GBo[ ( k f )  , 'g"] + #GBo[  ( k f )  , '2'] 

Pc  
(113) 

The individual integrals are evaluated using the small-k expansions. From 
this we obtain the projection onto the cokernel {f~, ~ }  for the relevant 
terms in (111 ), 

( , % ~ o [ ~ , ~ ] o { ~ , ~ } =  2p~(o-~ 2pa ~7 (114) 
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A similar (and far more gruesome) calculation yields an expression for 
8 25 0 in terms of Bo and a related function. The following results are the 
only ones which will be necessary to proceed with our calculation: 

a2~o [~r ~r {~i ,  {e~} 

= [4~O_t_4pG~l_pG#Z~72( l_ t_2~O)_ f f2_ t_3a#Ca4  4~3 ~f~ ~ (115) 

and 

8250[f#~, f#;] o {c~, ~q~} = 2 [1 /2_  pG#~a2_  pG a2 2+9~z#c4a4~3 ~#2 ~ (116) 

From the above expressions we obtain the functions h~ and h2 in the 
neighborhood of the origin, 

hi = 4pG~o+ q glA--2#za2~le2A 
PG 

3 4a4~ 
+ 4#o+4pG~l - -~2- -pc#2a2( l+2~o)+~J~lA  2 

-t- O(el  A3) -{- O(/]le2Z~ 2 ) 
(117) 

h 2  2 2 # 6  (7 2 2 2 = P G e l +  Pc - A + [ 4 p c - 4 p c # ~ a  ]ezA 

+ [ 1 / 2  2 2 2 2 9 4 4132 - p c # c a  - p e a  + #ca 

+ O(g~A)+ 0(522 A) + O(e2A 2) + O(A 3) 

A solution of the recursion relation for A > 0  must have 
hi(el, e2, A; ~)=h2(el,  e2, 3; ~)=0.  First, consider the case ~0>0. The 
leading order [O(e~A)] contribution to h~ will be zero for e, r 0 only when 
the variance of the Gaussian has the special value 

2 2(2~ o + 1) 
0"M~ #~Pc  (118) 

Consequently, for this value of the variance, the origin is a critical point for 
the magnetized solution. On the other hand, if el =0,  from the leading 
contribution [O(A)] to h2, we find that the origin is a critical point for 
the symmetric solution when or--aa, where 

2 
2 = (119) c% #~Pc  
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Let us focus on the magnetized solution: el v a0. We choose a = 6M. 
The condition h 2 = 0 is satisfied to O(A) when 

I ~ l ( ,~ )  = +(2~~ (120) 
- \ P G  / 

to leading order, which defines the surface of a symmetric trough resting on 
the e2 axis in the three-dimensional space defined by el,e2, and A. 
Similarly, the condition hi = 0 is satisfied to 0(32) when 

2 2 2 e2(A) - 4~~ + 4pG~I-  ~ M -  PG/*G~M(12.20 -2 + 2~0) + 3#464/4 A 
# G  M 

= 2#x2 + p~(2~'o + 1) A (121) 

to leading order. Equation (121) defines a plane in (~1, e2, A) space which 
intersects the e~ axis at a finite angle, and which, consequently, must inter- 
sect the trough [Eq. (121)] in two distinct curves, which yield our 
magnetized solutions. This calculation proves that the scaling solution at 
the origin bifurcates when o- = o-M, since we have explicitly determined non- 

trivial curves along which hi = h 2  = 0. Because e 1 = O(x/~ ) and e2 = O(A), 
direct examination of (117) verifies that the additional terms which 
contribute to h~ and h 2 a r e  indeed higher order. Note that when el =0,  
we retrieve the spin-glass solution, where the corresponding equation for 
~2(A) is given by setting ~o = ~ = 0 in (121). 

Next we examine the case ~o=0. By inspection of Eqs. (118) and 
(119), we see that o-~t=o-c, so that magnetized and symmetric solutions 
must bifurcate from the same Gaussian. We consider the magnetized 
solution (el 50) .  (Analysis of the symmetric spin-glass solution follows 
exactly as before.) As in the previous case, the plane e2(A) along which the 
solutions must lie is determined by the condition h2 = 0, and is given by 
(121) with ~o=0: 

~1 1 
e2(A)= 2 2#~ FpG (122) 

to leading order. Similarly, the condition h 2 = 0  determines el(A) for the 
magnetized solution. When a = o-a, h2 = 0 on a surface given to leading 
order by 

= (4pG- 4p  go t 

(1 2 2 9 4 4~ ] 

J 
[ (3-2pa I ] =2A 4pa~z-- ~ A (123) 
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Substituting e2(A) from (122) into (123), we obtain e~(A) for the bifurcat- 
ing magnetized solutions. It is important to note that in order for these 
solutions to exist, we must have e 2 ~> 0, and hence 

e2 >/ Pc - A (124) 

From Eq. (122) we see that this is satisfied when (l>--Pc, where in the 
limiting case of equality, e l = 0  to leading order, so that the symmetric 
spin-glass and magnetized solutions agree to order A. When ~1 < Pc the 
only solution is the symmetric spin-glass solution. 

To determine the stability of the symmetric and magnetized solutions, 
we must calculate the leading corrections to the marginal eigenvalues vl 
and v 2 for each of the solutions. These are obtained by diagonalizing the 
operator N3 to order 4 2. This procedure is straightforward, and makes use 
of the integrals (114)-(116), which we have already evaluated. For the 
magnetized solution, we find that when Co > 0 

v~(a ) = - 8~o3/pc + 0 ( ~  2) 

Vz(a) = - 2 ( 1  +2(0)  A / p c +  O(A 2) 
(125) 

whereas when ~o = 0 and (1 >~ Pc, 

•I(A) = -- 2A2(4pG~1 -- 2) + O(A 3) 

v2(~)  = - 2 3 / p c  + O( A ~) 
(126) 

In each case, for the magnetized solution, the leading corrections are seen 
to be negative. Thus we may conclude that when the magnetized solution 
exists, it is linearly stable. Similarly, we compute the corrections to the 
eigenvalues for the symmetric spin-glass solution. These are given by 

vI(A ) = 4pG~O m + 4pG~I A2 + O(zJ 3) 

v2(A ) = -- 2A/p c + O(A 2) 
(127) 

Because v l (A)>0  in the magnetized phase, the symmetric spin-glass 
solution is unstable. | 

The eigenfunction ~q~ is associated with the mean, and the small-k 
expansion is given by fql = iak + O(k2). The coefficient el multiplied by the 
variance of the bifurcating Gaussian is the mean of the rescaled density in 
the neighborhood of the transition. From this we extract the scaling 
behavior of the unrescaled magnetization of our solution in the 
neighborhood of the multicritical point. 
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Corollary. Define A = p - p a  and ~(A)=A- I (~ - - )~N) .  Near the 
multicritical point (for small A), the mean of the magnetized solution deter- 
mined in Theorem 11 is given by 

[2~(1 + 2~).71/2 
m= +_2A [_ #2 G j + O(A 2) 

when A > 0 and lim~ ~ o ~/A > Pa. If either A < 0 or lim a ~ 0 ~/A < Pa, then 
m=0.  

Finally, we note that the magnetization as well as all the other 
moments of p(X) are smooth in the neighborhood of the multicritical point 
throughout the magnetized phase(s). There are no sharp changes which 
could signal the existence of an intermediate phase. Nonetheless, in the 
companion paper (ref. 1, Section 2), we verify the existence of a magnetized 
spin-glass phase by calculating the Edwards-Anderson susceptibility. 

APPENDIX A. DERIVATION OF THE MAGNETIC RECURSION 
RELATIONS 

In this Appendix we give a derivation of a set of three coupled recur- 
sion relations for two coupled replicas of the lattice in an external field 
(Theorem A.3). All recursion relations used in this paper can be obtained 
as special cases. Since the formulas in Theorem A.3 are quite complicated, 
we begin with a derivation of the simple recursion relation, introduced in 
Section 2, for a single copy of the half-space Bethe lattice with forward 
branching ratio two: 

J(= p(Oy Y+ O~Z) (A1) 
1 + pZOyO z YZ 

Equation (A1) was derived rigorously in ref. 2; however, here we present a 
much simpler derivation. Once (A1) has been derived, the methods are 
easily extended to the more general case for which we present an 
abbreviated derivation. 

T h e o r e m  A.1. Let X be the magnetization of the origin. Then 

p(Oy Y+ OzZ) (A2) 
X =  1 q- p2OyO z Y Z  

where Y and Z are the magnetization sites y and z would have if they were 
disconnected from x, p = tanh(J/kT), and Oy and 0 z are the signs of the 
bonds joining sites y and z, respectively, to site x. 
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ProoL Consider the left subtree, which starts at site y. Let dy be the 
partition function for that subtree, given % = + 1, and let Nv be the partion 
function for that subtree, given ay = -1 .  Define ~(~ and Nz to be the corre- 
sponding quantities for the subtree starting at site z. We can write the 
corresponding conditional partition functions for the half-space lattice 
(starting at x) in terms of these quantities: 

dx = s/ys4er176176 + ~y'~z efl(Oy-Oz)J-]- My,~C~e ~(0),-0~)J 

+ ~yNze p(0, + 0~)g (A3) 

= e ~ 1 7 6  

Similarly, 
Nx = (S~Cye ~orJ + Nyer e-~OzJ + ~]zeBOzJ) (A4) 

The partition function and the magnetization are easily expressed in terms 
of these variables; for example, 

and 

From this we deduce that 

Zfy= dy + Ny (A5) 

Y -  ~ - ~'Y (h6) 

~ y  1 

= ~ y ( 1  - Y) 

Therefore 
SCyee~ + Nye-~~ ~y cosh flJ(1 + pOy Y) 

Hence the magnetization of the origin is given by 

(A7) 

(A8) 

d ~ - ~ x  p(OyY+O~Z) (A9) 
X - d x + r 1 6 2  x l+p2OyOzYZ 

Finally, it is worth noting that this proof is easily extended to general 
branching ratio K, where we obtain 11 

X _ I ~ = ~  (1 +pO~Y~)-I~ K,=~ (1 -pOeY~) i 
H L ~  (1 +pO, Y~)+HK~ (1--p0~Y~) 

(A10) 

12 We wish to thank C. Newman for his assistance in deriving this recursion relation. 

822/61/5-6-6 
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Note that once the half-space lattices have settled down to the fixed 
point (i.e., after a sufficient number of iterations of the recursion relation), 
the same type of procedure can be used to join two half-space lattices and 
obtain the full-space quantities (e.g., the magnetization) in terms of the 
corresponding half-space quantities. Here we simply state the result; the 
proof is given in ref. 2 and also follows by the same type of method used 
above. 

Proposition A.2. Let mL be the half-space magnetization of the 
origin XL for the left half-space lattice. Similarly, let m R be the half-space 
magnetization of the origin xR for the right half-space lattice. Let 0 be the 
sign of the bond joining sites XL and Xa. Then the full-space magnetization 
_m r of the site XL is given by 

m L  + pOmR 
_mL-- (Al l )  

1 + p O m L m  R 

where p = tanh(flJ). 

The same method applied to two coupled replicas of the lattice in a 
nonzero external field yields the set of coupled recursion relations discussed 
in Sections 2 and 3 of the companion paper. 

Theorem A.3. Consider a system of two coupled copies of the 
v denote the spin at site x on the upper same quench of the lattice. Let a x 

L denote the spin at site x on the lower lattice. Let R be lattice, and let a x 
the ferromagnetic coupling strength of each site on the upper lattice to the 
corresponding site on the lower lattice. At each site we define the following 
quantities: 

Q x~_ U L 

S x  ~ u ( a  x ) + ( a L )  (a12) 

In terms of these quantities we have the following set of coupled recursion 
relations: 

O Gyz + rFy~ + hZ(Fyz + rGyz) + h~x(1 + r) NS~ (a13) 
x = Fyz + rGy~ + h2(Gy~ + rFy~) + h0~(1 + r) NSz 

S~= (l+r)[(l+h2)NS~+2hr (A14) 
Fyz + rOyz + hZ(ayz + rFyz) + h~bx(1 + r) N~z 

d 
(1-r)(1--h2)Nzz +h~bx(1 + r) (A15) 

Dx = Fy~ + rGy~ + h2(Gyz + rFyz) Uyz 
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where 

G~ = p2[Qy + Q, + �89 DyD,)]  

Fy~ = 1 + �89 + DyD~) + p4QyQ, 

N'yz = p[OySy(1 + p2Q~) + O,S~(1 + p2Oy) 

N y d = p[ OyDy(1 - p2Qz) + O,D~(1 - p2Oy) 

Ey, = p20,O~SyS, + (1 + p2Qy)(1 + p2Q,) 

(A16) 

(A17) 

(A18) 

(A19) 

(A20) 

and where r = tanh fiR, p = tanh flJ, h = tanh fill, Oy and 0~ are the signs of 
the bonds joining the origin x to sites y and z, respectively, and ~b~ is the 
sign of the external field at site x. 

ProoL The method used here is a straightforward generalization of 
the method used to prove Theorem A.1. However, because we have two 
lattices instead of one, and a nonzero external field, the algebra is a lot 
more complicated. 

We define the following conditional partition functions for the subtree 
of the coupled lattice system beginning at site y: 

~:y = y '+  + 

:)Y = ~ Y  - (a21) 

where ~y,%~ is the partition function for the subtree given that the spin at 
site y on the upper lattice has spin cry u, and the spin at site y on the lower 

L In the same way we define these quantities for the site lattice has spin Cry. 
z. The corresponding quantities at the site x can be written in terms of 
these as 

dx  = eR e2H [ dye2/~oyJ + ,~ye - Zr176 + c~y + ~y ] [ dze2~~ + Nze - ZP~ + Cgz + G ] 

Nx = ere -2~:[dy e -2/so~s+ Ny e2~0~s+ <gy + Ny] [~r e -2~0j+ ~z e2/~0j + ~ + ~z] 

cg x = e -  RE sCy + ~ ,  + %eZ~~ + Nye-  2~0,:] [dz + ~z + % e2~~ + G e  -- 2,gOzd ] 

N = e -  a[ ~Cy + Ny + Cgye- 2~~ + ~,e2P~ ] [ d~ + ~ + Cg~e - 2r176 + ~ e  2/~~ ] 

(A22) 

The natural variables Qy, Sy, and Dy for the coupled lattice system are 
defined in Eq. (A12). We can write these and the full partition function in 
terms of the conditional partition functions 
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s = ( jy  + .~y)_ (% + ~y) 

.~yDy = ( %  - ~y)  

(A23) 

From this we obtain 

4 ,  = �88 + Qy + 2Sy) 

~y=  �88 + Qy-2Sy) 
(A24) 

cgy= �88 _ Qy+ 2D,) 

~y = ~&(1 - Q y -  2D~) 

Using these and basic trigonometric identities, we rewrite the conditional 
partition function ~'x at level x as 

eRc  2H 
d ~ -  4 [I ~,~[(cosh2flJ+ l)+Qi(cosh2flJ-1)+ 2OS~sinh2flJ] 

i= y,z 

eRc  2H 

- 4 c~ ]~ ~[I+P2Qi+2pO~S~] (A25) 
tT~ y,z 

where p = tanh flJ. Similarly, we find that 

eRe- 2H 
~x-- - -  cosh2 flJ H 

4 i =  y , z  

e - - R  
~x = ~ c~ J H 

i= y,z 

c - -R  

~x = ~ c~ J H 
i=y ,z  

~ [ 1  + p 2 Q - 2 p 0 i S ~ ]  

~ [ 1  -p2Qi+2pO~D~] 

[1 - pZQi- 2pOiDi] 

(A26) 

Substituting these equations into the equations corresponding to (150) for 
the site x, we obtain the desired result. I 

A P P E N D I X  B. GLOBAL STABIL ITY OF THE P A R A M A G N E T I C  
FIXED POINT 

In this Appendix we prove that the paramagnetic solution p(X) = 6(X) 
is the unique globally attracting fixed point in the paramagnetic region of 
the phase diagram (Fig. 1). 
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T h e o r e m  2. The paramagnetic solution is globally stable when 
both of the following conditions hold: 

1. 2p(2)o-- 1) ~< 1 
(B1) 

2. 2p2~<1 

To prove Theorem 2, it is sufficient to show that q = E(X 2) = 0 is a 
globally stable fixed point of the recursion relation (11 ). To accomplish this 
task, we use the recursion relation to derive an iterative map which gives 
an upper bound for the second moment on the (n + 1)th level qn + 1 in terms 
of qn and other moments. If there were a sufficiently robust bound for qn + 1 
simply in terms of qn (as there is in the symmetric case), then the problem 
becomes analogous to a one-dimensional dynamical system (with the usual 
equalities replaced by inequalities ) - -a  contraction mapping. However, in 
the asymmetric case the problem becomes more complicated because a suf- 
ficiently strong bound on qn+l necessarily involves the first moment mn 
(Lemma B.2). Consequently, we must also derive a map which gives an 
upper bound on the first moment. Fortunately, we can derive a good 
bound on mn + 1 in terms of mn and qn alone, so that the resulting pair of 
maps for mn+l and qn+l can be used simultaneously and the problem is 
similar to a two-dimensional dynamical system (again, with inequalities). 

By analogy to the one-dimensional system, the initial hope is that the 
{m, q} will obey a strict two-dimensional contraction--i.e., for all p and 2 
in the specified range and for all initial m and q, one might hope that both 
m and q decrease on every iteration. However, were this the case, then the 
problem could have been treated by a simple one-dimensional map on q. 
Indeed, it is easy to construct initial conditions on m and q for which this 
is not the case. 

Instead, we will employ the following device, which we call box con- 
traction. We begin by considering a rectangular region (or box) in the 
q-tm[ quadrant, B(bn, r/n ) = {0 ~< Imn[ ~< C~n, 0 ~< qn ~ t/n} with one corner at 
the origin, and the opposite one at the upper bounds (6n, t/n). Our aim is 
to show that after one iteration of our bounds, this region maps into a 
strictly smaller region. It is important to note that it is not necessary for 
each point (a particular pair [mnl, qn) in the box to systematically flow 
toward the origin. Instead we show that the corner of the box contracts. 
Our proof involves showing that there is a wedge WeB(l,  1) from 
(m, q ) =  (0, 0) to one or both of the boundaries m =  1, q =  1 with the 
following property. Let (fin, r/n) E W. Then the bounding map applied to the 
box B(a,,,tln ) results in a new box B(an+l,r /n+l)  with 6n+l<~n  and 
t/ .+l <~/n. If the corner (6n+1, On+l) of the new box also lies in the wedge 
W, then the procedure may be safely repeated. On the other hand, it may 
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be that the corner of the new box is either below or above the wedge (see 
Fig. 14). In the former case, for example, we may safely replace 6~+~ by 
a larger value 6.+~ <6~ such that ( ~§ ~ + ~ ) s  W. As a result the new 
box B(~'~+~,t/n§ ) is contained strictly within the box B(~,, t/~) of the 
preceding iteration, and its corner is in the wedge. We can now apply the 
bounding map to B(~ '~ § ~, r/, § ~). 

We determine the "lower" and "upper" boundaries of the wedge in 
Lemmas B.3 and B.4. In Lemma B.5 we show that the "upper" boundary 
always ties above the "lower" boundary, i.e., that there is a wedge. Finally, 
in our proof of the theorem we verify that this is a sufficient condition for 
the initial maximal bounding box B(1, 1) to systematically contract to 
(0, 0). 

As previously stated, we will begin by deriving an upper bound on the 
first moment. We give bounds for the absolute value, to avoid any 
ambiguity regarding sign. 

Lemma B.1. Let q, denote the second moment and [mnt denote the 
absolute value of the first moment of the distribution p,(Y) on the nth 
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Fig. 14. Box contraction in the q-Ira[ plane. Suppose ([mn[, qn) lies in the bounding box 
B(6n, qn). After an iteration of the recursion relation, Lemma B.3 shows that bound 6, on the 
first moment contracts when 6,,<rl,,L (the horizontally striped region), while Lemma B.4 
shows that the bound r/, on the second moment contracts when 6 n < t / ,U (the vertically 
striped region). When the corner (~,, t/n ) lies in the wedge W, both bounds contract. As 
shown in the figure, if the new corner (6n + i, ~/~+ 1) lies below the wedge, the bound 6. +1 can 
be replaced by fi'n +1, satisfying 6. +1 < 6 '. +1 < fin, such that B(6'n + 1, r/~ + 1) is strictly contained 
in the initial box B(~5~, t/n), and (6'n+1, ~/n+l) lies in the wedge. 



Bethe Lattice Spin Glass. I 1047 

level. After a single iteration of the recursion relation (11) the absolute 
value of the first moment is bounded above by 

[m.+l[ ~< 2 p ( 2 2 -  1)[[m.[ _#2qn Imp[ + x(p) ]24qn2 ] + #8q]_= R(qn, Im.I) 

(B2) 

where 

1, p < 2/3 
x(P) = 2/3, p ~> 2/3 (B3) 

Proof. Making use of the identity 

1 x 4 
= 1 - x + x 2 - x 3 +  - (B4) 

l + x  i - x  

which is valid for all x ~ -1 ,  we expand the denominator of Eq. (11) to 
obtain 

X =  p(Oy Y +  OzZ)[1 - ]220yOz Y Z  + ]24 y 2 Z 2  - ]260yOz y3Z3]  

-t-]28y4Z4F( Y, Z; Oy, Oz) (B5) 

Taking the expectation and absolute value of both sides of this equation, 
we obtain 

Imn+ll ~< 2 p ( 2 2 -  1) l - lm.[-  ]22qn [m,,I-k]24qn Ir.I--] 26 [r.I t~3 q- ]2st~ (B6) 

where r. = E(y3)  and t. -= E(y4).  In arriving at Eq. (B6), we used the facts 
that IF(Y, Z; Oy, 0z)[ ~< 1, (t -]2Zq~)~>0, and (q.-]2gtn)>t0. In order to 
reduce this to a two-dimensional equation, we must replace r. and tn by 
some function of rn n and q.. In the last term we replace t] with qn 2 because 
qn ~> t.. Next we consider the pair of t e rms  ]A 4 [r.[ [ q . -  ]2ztn] together. We 
must consider two cases. If p < 2 / 3  and therefore ]22 = 2 p - 1  < 1/3, we 
replace jrn] by q. in the first term, and drop the (negative) second term and 
the inequality still holds. If p/> 2/3, and hence ]22./> 1/3, we need to get 
some mileage out of the second term. Making use of the moment inequality 
E2(y3)  ~< E(y2)  E(y4),  we obtain 

]24 IrA I-q. -]22t.3 <~]24(q.tn)l/2 [qn--]22t.] (B7) 

Because ]22 ~ 1/3 we obtain the inequality 

]24 Ir.I I -q.-]22t . ]  <~]24(q.t.)I/2 [ q . - � 8 9  (B8) 
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The usefulness of this substitution will become apparent in a moment. The 
simplest upper and lower bounds on tn are given by 

q~/> t. ~> q2 (B9) 

We want to choose tn so that the upper bound takes its maximum value. 
This corresponds to maximizing the right-hand side of (B8). Differentiating 
the right-hand side of (B8) once with respect to tn reveals that it is a 
monotonically increasing function of t~ for all t~ satisfying (B9). Hence the 
bound takes its maximum value when t~ is replaced by q~, from which we 
obtain the bound (B2). | 

Next we determine the corresponding upper bound on the second 
moment. 

Lamina  B.2. Using notation as in Lemma B.1, after a single itera- 
tion of the recursion relation (11), the second moment is bounded above 
by 

qn+l~2p2q.+2p2(22 - 1)2 m] + 4P2#2(22 - 1) 2 Imnl qn 

_ [4p2#2 _ 3kt4 _ 2#6(2). _ 1)2] q2 

=-- S(q., Im.[) (BlO) 

ProoL We begin by squaring the recursion relation 

J[,'2 -- p2(  y2 + Z 2 + 20yOz YZ) 
(1 "~- ].~20yO z Y Z )  2 ( B l l )  

This time we will make use of the identity 

1 3x 2 + 2X 3 

( l + x )  ~ - l - 2 x +  ( l + x )  ~ (B12) 

which is valid for all x # -1 .  As before we expand the denominator, and 
obtain 

X2 = p2( y 2  d- Z 2 -~ 20yO z YZ)[1 - 2t.~20yOz Y Z ]  

+(3#4yZz2+2#6OyO~y3Z3)F2(y,Z;Oy, Oz) (B13) 

Taking the expectation, we obtain Eq. (B10), where we have replaced the 
absolute value of the third moment rn with the upper bound qn and chosen 
the positive sign of the cross term (oc ]rnnl qn) corresponding to the 
maximum value of the right-hand side. | 
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Next we determine when the first moment individually contracts, 
which gives us the lower boundary of the wedge. 

k e m m a  B.3. When 2p(22-1)~<1 and 2p2~<1, if I m , l ~ 6  and 
q, ~< r/, then after an iteration, 

Im,+,l < 2p(22-  1) 3 (B14) 

for all 6, q satisfying 

6 > qL(p, 2) (B15) 

where 

L(p, 2) = K(p) ]/2 _~ (B16) 
2p(22 -- 1 ) 

and ~c(p) is defined in Eq. (B3). 

Proof. We determine the values of Imnl and q. which maximize the 
bound [the right-hand side of Eq. (B2)] in the box (t/, 6). Since R(q., Im.I) 
is a monotonically increasing function of Imnl for all Imn[ ~< 1, the right- 
hand side of Eq. (B2) takes its maximum value when Imnl = 6. However, 
because R(qn, Im.I) is not a nondecreasing function of qn, a simple sub- 
stitution of ~/ for q. does not generally maximize eq. (B2). To avoid this 
complication, we formally replace Rn(lm.I , q.) by a less restrictive bound, 

[m.+11<2p(22--1)3, for 0 < q n < q *  
(B17) 

tm.+ll<~R(qn,6), for q*<<.qn<~rl 

where q * =  6/L(p, 2) [note that L(p, i) is strictly positive], and we have 
used the facts that qn > 0 and 6 > 0 to provide the strict inequality on the 
first line. This new function has the advantage that it is a nondecreasing 
function of both q, and [m,I throughout the range of interest. Now if 
we define our box as specified in (B15), then qn<~rl<q*. Hence 
Imn+~l <2p(22-1)6 as desired. | 

Next we examine our bounds on the second moment to determine 
when it contracts. 

Lemma B.4. When 2p2~<1 and 2p(22-1)~<1, and r/ and 6 are 
defined as in Lemma B.3, after an iteration of (B10), 

q,+~ < 2p2r/ (B18) 
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for all cS, q satisfying 

6 < tlU(p, 2) (B19) 

where 

U(p, 2) = __#2 "4- {/*4 ~_ [4p2#2 __ 3/*4 __ 2/.6(2)v __ I )2]/[-2pZ(2)v __ 1)2] }1/2 

(B20) 

Proof. Because the right-hand side of Eq. (B10) is a monotonically 
increasing function of both ]mn] and qn throughout  the region of interest, 
it takes its maximum value when ]mn] = 6  and qn=q .  Explicitly sub- 
stituting these values, we obtain 

q. +~ ~< 2p2/'1 --[- 2 p 2 ( 2 ) ] ,  - -  1 )2 a 2 ..{_ 4p2/~2(22 __ 1 )2 fir/ 

-- E4p2/* 2 - 3 /14  - 2/*6(22 - 1 )23 r/2 (B21) 

From this we find that  qn + 1 < 2p27/ when 

6<qU(p, 2) | (B22) 

The existence of the contraction wedge W depends on the fact that  
U(p, 2) > L(p, 2) > 0. This key point is proved in the following lemma. 

I . e m m a  B.5. When 2p 2 ~< 1 and 2p(22 - 1) ~< 1, it is always the case 
that L(p, 2) < U(p, 2), and L(p, 2) > 0, where these functions are defined in 
Eqs. (B19) and (B20). 

Proof. We verify that  U(p, 2 ) -  L(p, 2 ) >  0 for the ranges of p and 2 
stated in the lemma. It is equivalent to show that 

{#4 -4- [-4p2/* 2 - 3/* 4 - 2/*6(22 - 1)23/]-2p2(22 - 1) 2 ] )1/2 

1/6 
> [1 + so(p)] #2+  (B23) 

2 p ( 2 , ~  - 1) 

Squaring both sides, it is sufficient to verify that  

/*4 _~ 4p2/ ' /2  - -  3/* 4 - -  2 / . 6 (  2~" - -  1 )2 

2p2(22 -- 1 )2 

2[-1 +re(p)]  8 /~2 
> [ - l  -4- / r  /*4 q - 2p(22_1)/~ +4p2(22_1)2  (B24) 
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Bringing all the terms to the left-hand side, letting co = 2 p ( 2 2 - 1 ) ,  and 
multiplying the whole equation by coz > 0, we find that this is equivalent to 

2 [4p2# 2 - 3# 4 _ #6co2/2p2] 

- co2~c(p)[2+~c(p)]#4-2co[1+~c(p)]#8-#12>O (B25) 

We see that (B25) is a monotonically decreasing function of co. Hence it is 
sufficient to verify the equation in the worst case scenario co = 1. In addi- 
tion, recalling that #2= 2 p - 1 ,  we minimize the right-hand side of (B25) 
with respect to p. We find that the rhs is strictly positive for all p in the 
allowed range, taking its minimum value as p ~ 2/3 from below. This 
proves the lemma. | 

Armed with these results, we are ready to give the proof of Theorem 2. 

Proof of Theorem 2. Let p and 2 satisfy the conditions stated in the 
theorem. Consider an initial box B(t/, 3) whose corner (it ~< 1, 6 ~< 1) lies in 
the wedge L(p, 2) q < 6 < U(p, 2) t/. Lemmas B.3 and B.4 indicate that after 
a single iteration, this box maps into a smaller box strictly contained in 
B(2p2t/, 2p(22 - 1) 6). If the new corner does not lie in the wedge, we can 
always define a slightly larger box, still contained in the initial box B(q, 6), 
whose corner does lie in the wedge. If the wedge includes the point t /= 1, 
6 = 1, then our proof is complete. This corresponds to the case L(p, 2) ~< 1 
and U(p, 2)~>l. However, there are two other possible cases. If 
U(p, 2)< 1, then we first consider boxes of the form (1,6), where 
L(p, 2)~< 6 ~< 1, and apply our argument for the contraction of the first 
moment, independent of the second, to show that after a finite number of 
iterations, the first moment is bounded above by Im, I < L(p, 2), which is 
contained in a box with corner in the wedge. Similarly, if L(p, 2) > 1, we 
first apply our argument for the contraction of the second moment, inde- 
pendent of the first, to show that boxes of the form (t/, 1), where 
1/U(p, 2) ~< q ~< 1, contract into the wedge. 

If the given values of p and 2 do not lie on a phase boundary, then 
convergence to the paramagnetic solution is exponential: i.e., if we let 
C = m a x ( 2 p  2, 2p (22 -1 ) ) ,  we find that after n iterations in the wedge our 
initial box maps into a box contained in the region B(Cntt, C"6). Even 
along the phase boundaries (i.e., C =  1), the strict inequalities of Lem- 
mas B.3 and B.4 imply that the box converges to the origin, although here 
we do not obtain an estimate on the rate. In either case, we may conclude 
that the paramagnetic solution is globally stable. | 
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APPENDIX  C. B O U N D S  ON THE E D W A R D S - A N D E R S O N  
ORDER PARAMETER IN THE 
SPIN-GLASS PHASE 

In this Appendix we prove Theorem 1.3 of Section 4.t, which gives an 
upper bound on the Edwards Anderson order parameter qEA, as 
illustrated in Fig. 6. The proof is divided into two parts. First we use 
moment analysis to obtain upper and lower bounds which hold whenever 
1/2 ~ 2 < 2~ and p ~> PG- The proof of the lower bound (Proposition C.1) is 
rather straightforward. For  the upper bound (Proposition C.2), we must 
use a two-dimensional moment analysis (m and q), similar to the method 
used to prove global stability of the paramagnetic solution in Appendix B. 

Although the results of Propositions C.1 and C.2 do establish that, as 
P---' Pc,  qEA scales linearly with I P -  PG[, they do not give the same coef- 
ficients of linear scaling. This is due to the fact that our bounds on qn +~ 
[e.g., Eq. (B10)] involve odd moments, for example, the magnetization 
mn = E(Y), which cannot be a priori ignored in the asymmetric case. 
However, our bifurcation results in Section 4.2 indicate that these odd 
moments should vanish in the (nonmagnetized) spin-glass phase. In 
Proposition C.5 we use a relatively simple functional analysis argument to 
show that whenever 2 < 3/4, the fixed-point density must be symmetric. 
Consequently, when 2 < 3/4, odd moments can be ignored, and we can 
borrow the results of moment analysis in the symmetric case (2) to obtain 
the exact coefficient of linear scaling. We expect that an analogue of 
Proposition C.5 should hold for all )~ < 2N. In fact, this turns out to be 
related to questions of global stability which we are currently investigating. 

First we give a simple lower bound on the Edwards-Anderson order 
parameter in the spin-glass phase. 

Proposit ion C.1. In a finite neighborhood of the phase boundary, 
P > PG = l /x /2  and 1/2 ~< 2 <)ON, iterates of the second moment are even- 
tually bounded below by 

2p 2 -  1 
qL -- 2p2/./2 [2 q_ #2(2)~ _ 1 )2] ( e l )  

Proof. Squaring the recursion relation (11), we obtain 

X2 PZ( Y2 + Z2 + 2OyOz 
= (l+[t2OyOzyz)2YZ)-=F2(r,Z;OyOz) 

Making use of the fact 

(C2) 

1 3x 2 q- 2X 3 

(1 + x )  ~ -  1 - 2 x +  (1 + x )  2 (C3) 
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we expand the denominator of (C2), 

X2 = p2( y2 + Z 2 + 20y0z YZ)[1 - 2#20y 0z YZ] 

"~ (3# 4 y2Z2 -~ 2#60y0z y323) F2( I7, Z; 0y0z) (C4) 

Taking the expectation and noting that F2(I1, Z; OyOz)>~ 0 yields the lower 
bound on qn+ 1 = E(X2) :  

q~+~ >~2p2q.+ 2p2(22 - 1)2rn2.--4p2#2(22 - 1)2m.r.-4p2#Zq 2 (C5) 

where m. = E(Y), q. = E(y2), and r. = E(y3). Next we simplify our bound 
on q. § 1, so that the right-hand side of Eq. (C5) is replaced by a function 
of q. alone. To maintain the inequality in Eq. (C5), we want to minimize 
the right-hand side with respect to m.  and r. .  Because the term propor- 
tional to r.  is negative, we can replace r. with the upper bound qn ~> r..  To 
minimize the right-hand side with respect to m.,  we note that for any given 
value of qn, the terms containing m~ (after r.  is replaced by q.) are 

fq,~(m.) = 2p2(22 - t )2 m~ - 4p2#2(22 - 1) 2 m.q.  (C6) 

which will have a minimum value when m. = #2q. for any q.. Hence, sub- 
stituting this for m. in (C5), we obtain 

q,,+,>~2p2q_2p2#212+#2(22 1)2] 2 _  - -  q ~  = D ( q . )  ( C 7 )  

Note that D(q.) is quadratic in q., with a maximum at q . = q * =  
p2/2p2#212 + #2(22 - 1 )23. 

Let qL be defined as in the statement of the proposition. [Note that 
qL may be obtained by solving Eq. (C7) self-consistently.] It is easily 
verified that in a neighborhood of the phase boundary 

qL =- O(A) ~ q* < 1 (C8) 

and 

D(qL) < D(1 ) (C9) 

From (C8) and (C9) and the fact that D(q) is quadratic, it follows that for 
d ~ 1, (C7) can be replaced by 

q.+~ > ZS(qn) (clo)  
where 

b(qn)=~D(q~), q .<qL (Cl l )  
(qL, qz <q.<~ 1 
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Note that /3(qn)  is monotonically increasing, and hence that the equation 
/3(q) = q has only one stable fixed point at q = q / .  Thus, (C10) implies that 
for A ~ 1, q, converges exponentially to qL. | 

The lower bound on q proves that a phase transition occurs crossing 
the spin-glass phase boundary. However, from a lower bound alone we 
cannot determine the order of the transition or the associated critical 
exponents. The next proposition gives an upper bound on q. Because this 
bound approaches zero at the phase boundary, we can conclude that the 
transition is second order. Furthermore, because both the upper and lower 
bounds have the same limiting power law behavior at the phase transition, 
we can determine the critical exponent fl = 1. 

Proposition C.2. In a finite neighborhood of the phase boundary, 
P > PG = 1/x/~ and 1/2 < 2 < )'N, iterates of the second moment are even- 
tually bounded above by 

q u =  (2p 2 - 1) 

• {4p2/~ 2 - [3 + (32/9) p2(22 - 1) 2 ] #4 

_2#6(22_1)2 (10/3)p(2)~_1)#8_#12/2} 1 (Ct2) 

Remark. The above bound is valid in a finite neighborhood of 3 = 0. 
However, for each value of 2, the bound qv eventually reaches the limiting 
value of 1 as p increases (T  decreases). This defines a smooth curve p(2) in 
the spin-glass phase. Below this curve we replace the above bound by 
the trivial bound q u =  1. In addition, our results break down when 
2 p ( 2 2 - 1 )  > 1. Usually the curve 2 p ( 2 2 - 1 ) =  1 lies below the curve p(2) 
(defined by q u =  1) which was discussed previously, and consequently we 
do not have to worry about it. However, in a small region near the multi- 
critical point, 2 p ( 2 2 -  1 )=  1 lies above p(2), in which case we set q u =  1 
when 2 p ( 2 2 - 1 ) =  1. In Lemma C.4 we show that it is always the case 
that q~: is of the form specified in (C12) in a neighborhood of the phase 
boundary, so that the leading behavior is qu oc 2p 2 -  1 oc IP-P61. 

The proof of the proposition makes use of several lemmas. The first 
three of these were used earlier to prove global stability of the 
paramagnetic solution in Appendix B. In Lemmas B.1 and 13.2 we deter- 
mined upper bounds on the first and second moments after n + 1 iterations, 
m,+~ and q,+~, in terms of m, and q,. The resulting equations (B2) and 
(B10) comprise the analogue of a two-dimensional dynamical system. Our 
goal is to determine a range of q and m which is globally stable with 
respect to iteration of these equations. As in Appendix B, we begin by con- 
sidering a general box in the q-m plane, with one corner at the origin 
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q = m = 0, say 0 ~< q,, ~< q and 0 ~< Im~] ~ 6, where r/ and ~ are less than or 
equal to 1. We refer to the coordinates (r/, 3) as the corner of the box, and 
the limiting box has corner at (qv, mu). Our aim is to show that any box 
with corner outside the limiting box will after a sufficient number of itera- 
tions lead to a box which has its corner at q~<qv and m~<mv. In 
Lemma B.3 we determined the conditions under which our upper bound on 
the first moment  contracts after a single iteration. In Lemma C.3 of this 
section we determine the corresponding conditions under which the bound 
on the second moment  contracts. In Lemma C.4 we show that in the 
neighborhood of the phase transition these two regions overlap in a man- 
ner such that there is a continuous strip connected to a point m = mu and 
q=qu along which the bounds on q and m simultaneously contract. 
Finally, in our proof  of the proposition we verify that this is a sufficient 
condition for the initial maximal bounding box ( t /= 1, 6 = 1) to systemati- 
cally contract to (q~:, m~). This determines the upper bound qt~, as well as 
the corresponding bound m ~. For  simplicity we assume fi > 1/2 throughout 
the proof. An analogous result was proved for fi = 1/2 in ref. 2. 

L a m i n a  12.3. 
defined as in Lemma B.3. After one iteration of (B10), 

for all 6, q satisfying 

where 

f (q ;  p, 2) 

= __#2q ..]_ ~ /~/24/~2 
v (  

Let 2p2>~ 1 and 1/2 <,4<2N, and let r/ and 6 be 

q,,+ 1 < t/ (C13) 

6 < f ( q ;  p, 2) (C14) 

[4p2# 2 -- 3#4-- 2#6(22 - 1) 2 ] r/2 -- (2p 2 -  1 ) r/) 1/2 
+ 

(c15) 

Proof. Because the right-hand side of Eq. (B10) is a monotonically 
increasing function of both Imnl and qn throughout the region of interest, 
it takes its maximum value when I mnl = 6 and qn = r/. Explicitly sub- 
stituting these values, we obtain 

qn + 1 ~ 2p2q + 2p2( 22 -- 1 )2 6 2 + 4pZ#e(22 _ 1 )2 6q 

_ 1-4p2/~2- 3#4_  2#6(22_ 1)2] q2 (C16) 

From this we find that q n + l <  ~/when 6 <f ( t / ;  p, 2). | 
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The region of the q-m plane for which this argument holds is 
illustrated in Fig. 15 for particular values of p and 2. Any box with its 
corner (t/, 6) lying below the curve m = f ( q ;  p, 2) will be mapped into a box 
with q, + 1 < i/. Furthermore, the boundary & contracts for any box with its 
corner lying above the line m = qL(p, 2), where L(p, ).) is given in (B19). 

In order to obtain the desired upper bounds m U and qu, we need 
to prove three more things. First, the two curves m=qL(p ,  2) and 
m = f ( q ;  p, )~) must intersect in a point m = mu and q = qv. Second, qo.~< 1 
in a neighborhood of the phase boundary. Finally, for m > my and q > qv, 
when q v < l  the curve m=qL(p , ; t )  must lie below m =  f(q; p, ).). This 
ensures that we have the situation illustrated in Fig. 15, and allows us to 
prove the proposition. 

I . e mm a  C.4. Let f(t/; p, )~) be defined as in Eq. (C15), and L(p, 2) 
be as defined in Eq. (B19). When 2p 2 ~ 1 and 1/2 < 2 < 2u, the two curves 
m= qL(p, 2) and m =f (q ;  p, 2) intersect in a point m = m u  and q =  q~:, 
where qv < 1 in a neighborhood of the spin-glass phase boundary. Further- 
more, when m > my and q > qv, qL(p, 2) < f ( q ;  p, 2). 

Proof. First we determine the point of intersection (qv, m~:) given by 

mu = qvL(p,  2)---f(qcA P, 2) (C17) 

. 
[ .  . { F .  { {  ! 

/ l , y "  
- l : / /  

I I Z  

0 . . . . . . .  

0 qu 
q 

Fig. 15. Upper bound on qEA in the spin-glass phase. We use the same method to obtain this 
bound as was used to prove global stability of p(X) = &(X) in the paramagnetic phase. The 
bound q on the first moment  contracts after one iteration if the corner of the bounding box 
(t/, &) lies in the striped region, while the bound b on the second moment  contracts if (t/, b) 
lies in the shaded reg,on. In the neighborhood of the transition, these regions overlap as 
shown, leading to upper bounds m v and q~: on the first and second moments.  
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Solving second equality for qu, we obtain (C12), as given in the statement 
of the proposition. Combining this with the first equality in Eq. (C17) 
yields the corresponding bound my. 

We find that qu = 1 along a curve in the spin-glass phase which is not 
connected to the phase boundary. The fact that qu < 1 near the phase 
boundary is obtained by checking the leading behavior of qv when 
P = PG + A for A small. Because ( 2 4 - 1 )  always appears with a negative 
sign in the denominator of (C12), at a fixed value of p, qu takes its 
maximum value in the neighborhood of the spin-glass phase boundary 
when 2 < 2 N. Near the multicritical point, we find 

2pG3 
qu = 2#2 - (35/9)#4 _ # 6 _  (5/3) #~ -#02/2  

+ 0( / i  2) (C18) 

where the denominator in the first term is strictly positive. Hence qu oc A 
near the phase boundary. 

It remains to be shown that for m > m u  and q>qu  the curve m =  
qL(p, 2) lies below m = f ( q ;  p, 4). Proving this requires some uninspiring 
but straightforward algebra as in Lemma B.5 of Appendix B. We leave it 
to the reader to verify this. We note that the worst case is encountered 
at the multicritical point, where at r/= 1 we find L(pc, 2N)~0.35 and 
f(1;pG,2u),"~0.4. | 

This situation is illustrated in Fig. 15. It corresponds to having a con- 
tinuous strip from the boundary m = 1 or q = 1 connected to q = qu and 
m = m~ along which both q and ]m] contract. Armed with these results, we 
are ready to give the proof of the proposition. 

Proof of Proposition C.2. Consider an initial box whose corner is 
given by (t/, 6) with t /< q~ and 5 > mu. Suppose the corner lies in the strip 
tlL(p, 2) < 6 < f(t/; p, 2). 

Lemmas B.3 and C.3 indicate that after a single iteration, this box 
maps into a smaller box contained in (t/, 2 p ( 2 2 - 1 ) 6 ) .  If the new corner 
does not lie in the strip, we can always define a slightly larger box, still 
contained in the initial box, whose corner does lie in the strip. 

If the strip includes the point t /= 1, ~ = 1, then our proof is complete. 
However, there are two other possible cases. As in the paramagnetic phase, 
one corresponds to q contracting first, until we reach the strip, while the 
other corresponds to m contracting first. In either of these cases, the proof 
is given by a straightforward generalization of this case. | 

Finally, we show that for 2 < 3/4, the fixed-point density must be 
symmetric. 

822/61/5-6-7 
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P r o p o s i t i o n  C.5. Let p(x) denote a probability density supported 
on [ - 1 ,  + 1]. Using p as the initial density, denote by Pn the density 
obtained from p under n iterations of (11). Then, provided 2 < 3/4, any 
limit of the sequence (p,) is symmetric. 

Remark. With a little caution, the above result may be generalized to 
the case in which the initial distribution cannot be expressed as a density. 

Proof. Let Pn be defined as in the statement of the proposition. We 
may decompose Pn into symmetric and antisymmetric pieces: Pn = sn + an, 
where s n = �89 + Pn( - x ) ]  and a n = �89 [pn(x) - P n ( - x ) ] .  Observe that 

Pn = ~ sn = 1 and that sn is a.e. nonnegative. 
By definition, p.+a is obtained from Pn according to p n + l =  

B,l,p[Pn, Phi, where B)o,p is an unrescaled bilinear operator, analogous to 
the rescaled operator defined in Eq. (26): 

1 1 

Bx.p[f, g] = f f fa(Y) gz(z) Eoyo~[b(x- F*(y, z; Oy, 0z))] dy dz 
--1 --1 

(C19) 
Thus 

pn+l=B)~,p[S.,S.]+Ba.p[an, a~]+2Ba, p[an, sn] (C20) 

Next we note that each of the terms above may be expressed in terms of 
the symmetric bilinear operator B1/2,p[.,. ] -  Bp[ . , .  ]. Indeed, we clearly 
have 

B~,p[s., s.] = Bp[s., s.] (c21) 
while 
B~.,p[S., a.] =22Bp[s.(y), a. (z)]  + (1 - 2 )  2 Bp[s.(y), a . ( - z ) ]  

+ 2(1 -2)[BpEs.(y), a. (z)]  +BpEs.(y), a . ( - z ) ] ]  (C22) 

etc. Using the antisymmetry of a.  and the symmetr of Bp under exchange 
of its arguments, we find that Eq. (C20) reduces to 

p.+1=Bp[s.,s.]+(Z2-1)2Bp[a.,a.]+2(2).-1)Bp[sn, a.] (C23) 

Furthermore, it is seen that s .+ l  is given by the first two terms of (C23), 
while a .  +1 is given by the last term. Finally, we note that the inequality 

IO~.,p[-f, gll  <~Oa, p[lfl, Ig[] (C24) 

holds pointwise (a.e.). Using (27) and (C24), as well as the observations 
sn = 1 a n d  s ,  ) 0 a.e., we obtain 

Ilan+,ll~ 4 2 ( 2 2 -  1) Ila, lt~ (C25) 

Hence, as n --, 0% a,  ~ 0 whenever 2(22 - 1 ) < 1, i.e., 2 < 3/4. | 
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Corol lary.  In a finite neighborhood of the phase boundary, 

p > pa  = 1/,,f2 and 1/2 < 2 < 3/4, the iterates q, of the second moment 
eventually obey the bounds 

2p 2 - 1 2p 2 -  1 
qc = 4p2#2 ~< q. <- 4p2#2(1 _ 3/2#2) --= qu (C26) 

Proof. By Proposition C.5, for n sufficiently large, we may ignore all 
factors of m,, (and other odd moments) in our upper and lower bounds on 
qn. This reduces our bounds to those obtained in the symmetric case 
(2 = 1/2) in ref. 2, where the forms of qL and qv are given in Proposi- 
tions 3.7 and 3.8. | 

Proof of Thoorem 3. Proposition C.1 and C.2 and the corollary to 
Proposition C.5 clearly give bounds on qEA of the desired form. In par- 
ticular, for 2 < 3/4, the functions V(p, 2) and W(p, 2) are independent of 2 
and are obtained from the bounds in the corollary, while for 3/4 ~< 2 < )~u, 
V(p, 2) and W(p, 2) are obtained from Propositions C.1 and C.2, respec- 
tively. | 

A P P E N D I X  D. C O M P L E T E N E S S  OF T H E  F E R R O M A G N E T I C  
E I G E N F U N C T I O N S  

In this Appendix we begin with a general result (Theorem D.1) on 
LZ(dx) completeness of a set of functions, consisting of a function 
0% = S(x), which satisfies certain conditions, and its derivatives 

=d'S(x)/dx ' .  We work in L 2 because it is convenient; however, a 
similar theorem should hold in any L e space. Although this theorem can 
be verified for many well-known sets of functions (e.g., Hermite and other 
orthogonal functions), it is obviously most useful when the explicit form of 
the function S(x) is not known. 

This first result is not directly applicable to the eigenfunctions of the 
ferromagnet, {J .},  which we recall are not given simply by the derivatives 
of Jo, but rather by 

f d ' J0  
dx----; ' n even 

= (D1) 
Z (d,~xJO) ' n o d d  

Consequently, in Theorem D.2, we extend the general result to the case in 
which even and odd eigenfunctions arc generated by derivatives of different 
functions. 
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Finally, we restrict to the specific case of the { ~  }. In Corollary D.3 we 
verify that these satisfy the conditions of Theorem D.2, and hence are 
complete in L2(dx). Then, in Corollary D.4 we restrict to the space 
LZ(cosh dx), and show that the remaining "good" functions are complete in 
this more restrictive space. We conclude this Appendix with a technical 
lemma which allows us to approximate the ~ ( k )  by their small-k expan- 
sions. 

T h e o r e m  D.1. Let SeL2(dx). Suppose that the Fourier transform 
vanishes only on sets of zero measure, and that S decays faster than 

exponentially at high frequencies, e.g., 

S(k) ~< cl e -  c2tkl~ 

where cl and c2 are constants, and a > 1. The set of functions defined by 

~o = S(x) 

d"S(x) 
~ . ( x )  = dx" 

form a complete set in L2(dx). 
Proof. Let M denote the L 2 closure of span{Se~}. We want to show 

that M =  LZ(dx). To this end, let us define a convolution operator S on 
L2(dx) according to 

S(~b) = f S(x - y) (~(y) dy (D2) 
J 

for ~beL2(dx). First we claim that S: L2(dx)---~L2(dx). Indeed, using 
the transform operator S (which is, of course, simply a multiplication 
operator), it is easy to see that S is bounded in L2: 

IES(~)II2 = ItS(~)l12 = IIS(k) 6(k)112 ~ cl  LI6(k)l12 (D3) 

where c 1 < oo is the constant in the statement of the theorem. 
Next we claim that 

(a) Ran(S)=LZ(dx)  

and 

(b) Ran(S)cM 

which, together with the fact that M is closed, imply that M = L2(dx), the 
desired result. (Here the overbar denotes the L 2 closure.) 
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It remains to establish (a) and (b). Take O EL2(dx) and e>0 .  To 
prove (a), it suffices to show that there exists ~b~Ran(S) such that 
]l~b - ~b,I} 2 < O(e). To this end, we define d~(k) in the domain of S according 
to 

fi,~(k)=f~(k)/S(k ) if IS(k)l > e 
(D4) 

otherwise 

and 

~(k)=f~(k)  if ,~ (k ) l>e  
(D5) to otherwise 

Using that fact that S(k) vanishes only on sets of zero measure, it is easy 
to see that ~ ( k )  defines a function with the required properties. In 
particular 

S ( ~ )  = ~ (D6) 

Next we show that R a n ( S ) c  _~r, which, since M is closed, implies (b). 
Since Cff is dense in L 2, we may consider q~ e C~.  We write 

~(k) = ~ (~,k" (D7) 

where the coefficients are bounded by 

e Dn 

Iq~,,[ ~< C n--~ (D8) 

for some constants C and D (as usual for C ~  functions). Now if we write 

S(~b)= ~ ~.k'~(k) = _ ~ O.3~.(k) (D9) 
n = 0  n = 0  

then we have apparently expanded S(~b) in terms of the functions {~} .  
However, we must verify that the rhs of (D9) is well defined, i.e., that this 
expansion is well behaved. Thus it is sufficient to show that 

lim ~ ~.ff~(k) =0 (Dl0)  
N ~ o o  

n ~ ' N  

From the triangle inequality, 

~U q~nS~(k) ~< ~ ]q~'[ r[S~(k)[12 
n 2 n > N  

( D l l )  
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so that (DIO) follows immediately from our assumptions of the decay of 
S(k). This establishes (b), and hence completeness. | 

We now generalize this result to the case which applies to the 
ferromagnetic eigenfunctions (D1). 

Theorem D.2. Let S(x), T(x)eL2(dx) .  Suppose that the transform 
functions ~r and T decay faster than exponentially at height frequencies 
(e.g., S and T obey bounds like those stated in Theorem D.1). Define the 
real-valued functions/~(k), i(k),/~(k), and Q(k) in terms of S(k) and T(k) 
according to 

S(k) = R(k)  + ii(k) (D12) 

T(K) = P(k)  + iQ(k ) (DI3) 

and suppose that J - Oi+/~/~ vanishes only on sets of zero measure. Then 
the set of functions {5r Y2.+ 1} defined by 

d2"S(x) 
~902n dx2n 

(D14) 
d2~+ IT(x) 

~2n+ l - -  dx2n+l 

form a complete set in L2(dx). 

ProoL The structure of the proof is almost identical to that of the 
previous theorem. Here we take M to be the L 2 closure of 
span{5~2n, J2,+1} and show that M =  L 2. Again we do this by introducing 
an operator which maps L 2 to L 2 and establishing properties of the range 
of the operator. 

Let Pe and Po denote the projection operators onto even and odd sub- 
spaces of L2(dx), respectively. (Thus, in k space, P~ and Po annihilate the 
imaginary and real parts, respectively, of the transform of a real-valued 
function.) Let S and T be convolution operators on L2(dx), as in (D2) with 
S replaced by our functions S or T, respectively. From these, we may 
construct an operator C on L2(dx) defined by 

C(~b) - PeS(~b) + PoT(~b) (D15) 

for (~eL2(dx). Note that IICll2~<IISI[2+qITt[2 immediately implies 
C: L 2 ~ L 2. 

Just as in the proof of Theorem D.1, it suffices to show 

(a) Ran(C)=L 2 
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and 

(b) R a n ( C ) c M  

The proof of (b) is strictly analogous to that in the previous theorem, so 
we do not repeat it here. 

It thus suffices to establish (a). As before, we take ~b e L2(dx) and e > 0, 
and show that there exists ~b~eRan(C) such that tl~--~ell2<O(~). We 
begin by writing the transform q~ in the form 

~(k) = ~(k) + iO(k) (D16) 

By analogy to Eq. (D6), we are looking for functions fi~(k) and/~(k) with 
~,~(k) = fie(k) + ibm(k) such that 

+ = 
(D17) 

on a set of large measure. Defining A as in the statement of the theorem, 
the solution of these equations is simply 

2 

(D18) 

Therefore, by analogy with Eq. (D4) we define 

~ = { ~ + i b ~  i fxJ>e  
otherwise 

(D19) 

and by analogy with Eq. (D5) 

~ = { ~  i f A > e  (D20) 
otherwise 

Therefore C(~)  = q~, and ~b~ is a function of the desired form. ] 

Next we verify that Theorem D.2 indeed applies to the ferromagnetic 
eigenfunctions {in }. 

Corollary D.3. The set of functions {in(x)} defined in (D1) are 
complete in L2(dx). 
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Proof. Using the notation of Theorem D.2, we set S ( x ) =  j0(x) and 
T(x)=xJo(X) .  That S and T have sufficient decay properties was 
demonstrated in Eq. (49). Thus, in order to apply the theorem, we must 
verify that 

[Q +/~/~ r  (D21) 

for almost every k, where 

~ l d  
IO +/5/~ = 2 ~ (k2 + 12) (D22) 

which can only vanish at isolated points, since Jo(k) is analytic. | 

Because L2(cosh x d x ) c  L2(dx) and because our functions {~r decay 
faster than exponentially (implying that they are elements of the more 
restrictive space), we also have the following corollary. 

Corol lary  D.4. The eigenfunctions {J,} defined by (D1) are com- 
plete in L2(cosh x dx). 

In Section 5 we use the more restrictive space L2(cosh x dx) since this 
allows us to discard the "undesirable" generalized eigenfunctions of the 
linear operator; in k space these are 

Jo(k),  n even (D23) @,(k) = ~'sign(k)]k n] "' 
(]k"] Jo(k), n odd 

It is clear that the singular behavior of the {~,(k)} near k = 0 prevents the 
transforms of these functions from being summable in L2(cosh x dx). Of 
course, there is nothing special about our choice of L2(cosh x dx) beyond 
the fact that functions in this space must fall off sufficiently rapidly. 

Given Corollary D.4, we can express the transform f of a function 
f e  L2(cosh x dx) in an eigenfunction expansion: 

f ( k ) =  ~ dnJ,(k)  (D24) 
n = 0  

However, in order to do computations in Section 5, it is necessary for us 
to express f ( k )  in a Taylor expansion about k = 0: 

j~(k)= ~ c,k  ~ (D25) 
n = 0  

The following lemma shows that the coefficients d, of the eigenfunction 
expansion (D24) can be deduced from the coefficients cn of the Taylor 
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expansion (D25) and the Taylor coefficients in the expansion of the 
(analytic) functions J.(k). 

L e m m a  D.5. Let f~L2(cosh x dx). Suppose that f has the eigen- 
function expansion (D24) and the Taylor expansion (D25). Then c, is 
uniquely determined by the {d m [rn <. n} and the Taylor coefficients in the 
low-momentum expansions of the analytic functions {Jm(k)[m <~ n }. 

Remark. This lemma shows that, as one would expect, the c, can be 
derived simply by equating coefficients of k n in the term-by-term expan- 
sions. 

Proof. Here we will use [[-][~ to denote the LP(dx) norm, [].[[p(ch) 
to denote the LP(coshxdx) norm, and [['[[P(i/oh) to denote the 
Le((1/eoshx) dx) norm. We first claim that if g,~L2(coshxdx)  is a 
general sequence of functions with [[g,[[2(r 0, then the Fourier trans- 
forms ~,(k) ~ 0 uniformly in k. To show this, we begin by noting that 

1 
supk ~(k) ~< ~ [r gH~ (D26) 

which follows simply from the definition of Fourier transform. Next, we 
note that 

I] g(x)ll 2(o~> = II g(x) cosh xll 2(1/~h) (D27) 

Furthermore, convergence in L2((1/eoshx)dx) implies convergence in 
Ll((1/cosh x) dx), since dx/cosh x is a finite measure. 

Now suppose I[g~rl2(oh)-~ 0. Then, using the properties noted above, 
we have 

0 = lira llg,(x)ll2r = lim Hgn(x) cosh x[12(1/ch~ 

=~0= lim [Ig,,(x)coshx[ll(l/r lim [Ign(x)[[1 (D28) 

This, together with (D26), shows that 

lim sup ~n(k) = 0 (D29) 

as claimed. 
Now supposef~ LZ(eosh x dx) has the eigenfunction expansion (D24). 

Defining the partial sums 
N 

f u ( k ) =  ~ d~J~(k) (D30) 
n = 0  
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it is clear that limN~ ~ IIfNll2(ch) --* 0. Then, applying the uniform con- 
vergence (D29) established above, it is clear that we may use the Taylor 
expansions of the J.(k) about k=0 ,  as well as (D25), and equate coef- 
ficients term by term to get the coefficients d n. | 

ACKNOWLEDGMENTS 

We thank D. S. Fisher, M. E. Fisher, J. Guckenheimer, D. Huse, 
H. Kesten, P. Mottishaw, C. M. Newman, R. Singh, and especially G.H. 
Swindle for many useful discussions. The work of J.M.C. was supported by 
the NSF under grant DMR-8503544 and by the DOE under grant PHY82- 
17853, supplemented by funds from the National Aeronautics and Space 
Administration, at the University of California at Santa Barbara, that of 
J.P.S. by the NSF under grant DMR-8503544, that of J.T.C. and L.C. by 
the NSF under Postdoctoral Fellowships in Mathematics and grant DMS- 
88-06552, and that of D.J.T. by the NSF under grant DMR-86-13598. 

REFERENCES 

1. J. M. Carlson, J. T. Chayes, J. P. Sethna, and D. J. Thouless, J. Stat. Phys., this issue. 
2. J. T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless, Commun. Math. Phys. 106:41 

(1986). 
3. K. Binder and A. P. Young, Rev. Mod. Phys. 58:801 (1986). 
4. S. F. Edwards and P. W. Anderson, J. Phys. F 5:965 (1975). 
5. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35:1792 (1975). 
6. J. R. L. de Almeida and D. J. Thouless, J. Phys. A 11:983 (1978). 
7. G. Parisi, Phys. Rev. Lett. 43:1754 (1979). 
8. F. Matsubara and M. Sakata, Prog. Theor. Phys. 55:672 (1976); S. Katsura, S. Fujiki, and 

S. Inawashiro, J. Phys. C 12:2839 (1979); S. Katsura, Physica 104A:333 (1980); S. Fujiki, 
Y. Abe, and S. Katsura, Comput. Phys. Comun. 25:119 (1982). 

9. Y. Ueno and T. Oguchi, J. Phys. Soc. Japan 40:1513 (1976); T. Oguchi and Y. Ueno, 
J. Phys. Soe. Japan 41:1123 (1976); T. Oguchi and Y. Ueno, Prog. Theor. Phys. 57:683 
(1977); T. Oguchi and T. Takano, J. Mag. Mag. Mat. 31-34:1301 (1983). 

10. D. R. Bowman and K. Levin, Phys. Rev. B 25:3438 (1982). 
11. D. J. Thouless, Phys. Rev. Lett. 56:1082 (1986). 
12. J. M. Carlson, J. T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless, Europhys. Lett. 

5:355 (1988). 
13. C. Kwon and D. J. Thouless, Phys. Rev. B 37:7649 (1988). 
14. H. Maletta and P. Convert, Phys. Rev. Lett. 42:108 (1979). 
15. H. Maletta and W. Felsch, Z. Phys. B 37:55 (1980). 
16. K. Westerholt and H. Bach, J. Phys. F 12:1227 (1982). 
17. H. Yoshizawa, S. Mitsuda, H. Aruga, and A. Ito, Phys. Rev. Lett. 59:2364 (1987). 
18. R. Hoogerbeets, W. L. Luo, and R. Orbach, N. Bontemps, and H. Maletta, J. Mag. Mag. 

Mat. ful/7:177 (1986). 
19. P, Monod and H. Bouchiat, J. Phys. Lett. (Paris) 43:L-45 (1982). 
20. H. Bouchiat, J. Phys. (Paris) 47:71 (1986). 



Bethe Latt ice Spin Glass. I 1067 

21. J. M. Carlson, Ph.D. Thesis, Cornell University (1988). 
22. C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, Commun. Math. Phys. 22:89 (1981). 
23. M. S. Berger, Nonlinearity and functional analysis, in Lectures on Nonlinear Problems in 

Mathematical Analysis (Academic Press, New York, 1977), Chapter 4.1. 
24. M. Reed and B. Simon, Methods o f  Mathematical Physics, Vol. II (Academic Press, New 

York, 1975), pp. 145, 205. 
25. H. Nishimori, Rigorous results on random spin systems with competing interactions, 

Thesis, Department of Physics, University of Tokyo (1981). 
26. P. Le Doussal and A. Georges, Yale University Report YCTP-Pl-88 (1988). 
27. P. Le Doussal and A. B. Harris, Phys. Rev. Lett. 61:625 (1988). 


